Skip to main content

Advertisement

Log in

New synthetic route to improve uniformity of cell-releasing PEG-based hydrogel carriers

  • MRS 50th Anniversary Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Cell-releasing hydrogel carriers enhance cell-based therapies by improving retention and viability within target tissues. We previously demonstrated tunable cell release from a hydrolytically labile β-thioester-containing polyethylene glycol-based hydrogel. However, the macromer synthesis dependent on thiol-Michael addition leads to batch variability and heterogeneous hydrogel properties. Herein, we report a new synthetic route with improved control of macromer molecular weight and characterize the resulting hydrogel properties. The resulting PEG dithioester acrylamide (PEGDTEA) hydrogel demonstrates a more controlled synthetic route to generate targeted molecular weights with reduced couplings, creating a more predictable and tunable hydrogel microenvironment for precise cell delivery applications.

Graphical abstract

Synthesis of thioester containing PEG macromer for more predictable and tunable cell-releasing hydrogels

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

Please email the authors for full access to the data.

References

  1. X. Wang, N. Rivera-Bolanos, B. Jiang, G.A. Ameer, Advanced functional biomaterials for stem cell delivery in regenerative engineering and medicine. Adv. Funct. Mater. 29, 1809009 (2019). https://doi.org/10.1002/adfm.201809009

    Article  CAS  Google Scholar 

  2. A. Golchin, T.Z. Farahany, Biological products: cellular therapy and FDA approved products. Stem Cell Rev. Rep. 15, 166–175 (2019). https://doi.org/10.1007/s12015-018-9866-1

    Article  Google Scholar 

  3. D. Tonkin, A. Yee-Goh, R. Katare, Healing the ischaemic heart: a critical review of stem cell therapies. RCM 24, 122 (2023). https://doi.org/10.31083/j.rcm2404122

    Article  Google Scholar 

  4. A. Gratwohl, M.C. Pasquini, M. Aljurf et al., One million haemopoietic stem-cell transplants: a retrospective observational study. Lancet Haematol. 2, e91–e100 (2015). https://doi.org/10.1016/S2352-3026(15)00028-9

    Article  Google Scholar 

  5. L.M. Marquardt, S.C. Heilshorn, Design of injectable materials to improve stem cell transplantation. Curr. Stem Cell Rep. 2, 207–220 (2016). https://doi.org/10.1007/s40778-016-0058-0

    Article  Google Scholar 

  6. M. Iwasaki, J.T. Wilcox, Y. Nishimura et al., Synergistic effects of self-assembling peptide and neural stem/progenitor cells to promote tissue repair and forelimb functional recovery in cervical spinal cord injury. Biomaterials 35, 2617–2629 (2014). https://doi.org/10.1016/j.biomaterials.2013.12.019

    Article  CAS  Google Scholar 

  7. J.M. Singelyn, K.L. Christman, Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices. J. Cardiovasc. Transl. Res. 3, 478–486 (2010). https://doi.org/10.1007/s12265-010-9202-x

    Article  Google Scholar 

  8. J. Yang, X. Sun, Y. Zhang, Y. Chen, Chapter 10—the application of natural polymer-based hydrogels in tissue engineering, in Hydrogels Based on Natural Polymers. ed. by Y. Chen (Elsevier, Amsterdam, 2020), pp.273–307

    Chapter  Google Scholar 

  9. M. Whitely, S. Cereceres, P. Dhavalikar et al., Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Biomaterials 185, 194–204 (2018). https://doi.org/10.1016/j.biomaterials.2018.09.027

    Article  CAS  Google Scholar 

  10. S. Cereceres, Z. Lan, L. Bryan et al., In vivo characterization of poly(ethylene glycol) hydrogels with thio-β esters. Ann. Biomed. Eng. 48, 953–967 (2020). https://doi.org/10.1007/s10439-019-02271-8

    Article  Google Scholar 

  11. N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27–46 (2000). https://doi.org/10.1016/s0939-6411(00)00090-4

    Article  CAS  Google Scholar 

  12. N. Zaquen, B. Wenn, K. Ranieri et al., Facile design of degradable poly(β-thioester)s with tunable structure and functionality. J. Polym. Sci. A 52, 178–187 (2014). https://doi.org/10.1002/pola.26986

    Article  CAS  Google Scholar 

  13. A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). https://doi.org/10.1016/j.cell.2006.06.044

    Article  CAS  Google Scholar 

  14. J.S. Choi, B.P. Mahadik, B.A.C. Harley, Engineering the hematopoietic stem cell niche: frontiers in biomaterial science. Biotechnol. J. 10, 1529–1545 (2015). https://doi.org/10.1002/biot.201400758

    Article  CAS  Google Scholar 

  15. A.E. Gilchrist, S. Lee, Y. Hu, B.A.C. Harley, Soluble signals and remodeling in a synthetic gelatin-based hematopoietic stem cell niche. Adv. Healthc. Mater. 8, 1900751 (2019). https://doi.org/10.1002/adhm.201900751

    Article  CAS  Google Scholar 

  16. M.S. Hahn, L.J. Taite, J.J. Moon et al., Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27, 2519–2524 (2006). https://doi.org/10.1016/j.biomaterials.2005.11.045

    Article  CAS  Google Scholar 

  17. S.H. Frayne, B.H. Northrop, Evaluating nucleophile byproduct formation during phosphine- and amine-promoted thiol-methyl acrylate reactions. J. Org. Chem. 83, 10370–10382 (2018). https://doi.org/10.1021/acs.joc.8b01471

    Article  CAS  Google Scholar 

  18. J. Magano, Large-scale amidations in process chemistry: practical considerations for reagent selection and reaction execution. Org. Process Res. Dev. 26, 1562–1689 (2022). https://doi.org/10.1021/acs.oprd.2c00005

    Article  CAS  Google Scholar 

  19. G.J. Rodriguez-Rivera, A. Post, M. John, et al., Towards prevention of re-entrant arrhythmias: injectable hydrogel electrodes enable direct capture of previously inaccessible cardiac tissue (2023). https://doi.org/10.1101/2021.11.03.467102

  20. D.P. Nair, M. Podgórski, S. Chatani et al., The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem. Mater. 26, 724–744 (2014). https://doi.org/10.1021/cm402180t

    Article  CAS  Google Scholar 

  21. G.-Z. Li, K.R. Randev, H.A. Soeriyadi, et al., Investigation into thiol-(meth)acrylate Michael addition reactions using amine and phosphine catalysts. Polym. Chem. 1, 1196–1204 (2010). https://doi.org/10.1039/C0PY00100G

    Article  CAS  Google Scholar 

  22. M. Liu, B. Hoon Tan, P.R. Burford, B.A. Lowe, Nucleophilic thiol-Michael chemistry and hyperbranched (co)polymers: synthesis and ring-opening metathesis (co)polymerization of novel difunctional exo-7-oxanorbornenes with in situ inimer formation. Polym. Chem. 4, 3300–3311 (2013). https://doi.org/10.1039/C3PY00110E

    Article  CAS  Google Scholar 

  23. J.W. Chan, B. Yu, C.E. Hoyle, A.B. Lowe, The nucleophilic, phosphine-catalyzed thiol-ene click reaction and convergent star synthesis with RAFT-prepared homopolymers. Polymer 50, 3158–3168 (2009). https://doi.org/10.1016/j.polymer.2009.04.030

    Article  CAS  Google Scholar 

  24. F.C. Nising, S. Bräse, Recent developments in the field of oxa-Michael reactions. Chem. Soc. Rev. 41, 988–999 (2012). https://doi.org/10.1039/C1CS15167C

    Article  CAS  Google Scholar 

  25. M.B. Browning, S.N. Cereceres, P.T. Luong, E.M. Cosgriff-Hernandez, Determination of the in vivo degradation mechanism of PEGDA hydrogels. J. Biomed. Mater. Res. A 102, 4244–4251 (2014). https://doi.org/10.1002/jbm.a.35096

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health (NIH/NIAMS R21 AR076708) and the Early Career Provost Fellowship Program from the Provost's Office of Diversity at the University of Texas at Austin. Graphical abstract was created using BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Cosgriff-Hernandez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, M., Hicks, A., Sullivan, T. et al. New synthetic route to improve uniformity of cell-releasing PEG-based hydrogel carriers. MRS Communications 13, 901–906 (2023). https://doi.org/10.1557/s43579-023-00446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00446-y

Keywords

Navigation