Skip to main content

Advertisement

Log in

Unveiling chirality: Exploring nature’s blueprint for engineering plasmonic materials

  • MRS 50th Anniversary Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Chirality, the property of asymmetry, is of great importance in biological and physical phenomena. This prospective offers an overview of the emerging field of chiral bioinspired plasmonics and metamaterials, aiming to uncover nature’s blueprint for engineering nanostructured materials. These materials possess unique chiral structures, resulting in fascinating optical properties and finding applications in sensing, photonics, and catalysis. The first part of the prospective focuses on the design and fabrication of chiral metamaterials that mimic intricate structures found in biological systems. By employing self-assembly and nanofabrication techniques, researchers have achieved remarkable control over the response to light, opening up new avenues for manipulating light and controlling polarization. Chiral metamaterials hold significant promise for sensing applications, as they can selectively interact with chiral molecules, allowing for highly sensitive detection and identification. The second part delves into the field of plasmonic nanostructures, which mediate enantioselective recognition through optical chirality enhancement. Plasmonic nanostructures, capable of confining and manipulating light at the nanoscale, offer a platform for amplifying and controlling chirality-related phenomena. Integrating plasmonic nanostructures with chiral molecules presents unprecedented opportunities for chiral sensing, enantioselective catalysis, and optoelectronic devices. By combining the principles of chiral bioinspired plasmonics and metamaterials, researchers are poised to unlock new frontiers in designing and engineering nanostructured materials with tailored chiroptical properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. A. Lininger, G. Palermo, A. Guglielmelli, G. Nicoletta, M. Goel, M. Hinczewski, G. Strangi et al., Chirality in light-matter interaction. Adv. Mater (2022). https://doi.org/10.1002/adma.202107325

    Article  Google Scholar 

  2. M. Quack, G. Seyfang, G. Wichmann, Perspectives on parity violation in chiral molecules: theory, spectroscopic experiment and biomolecular homochirality. Chem. Sci. 13(36), 10598–10643 (2022)

    CAS  Google Scholar 

  3. L.D. Barron, 1. An introduction to chirality at the nanoscale (Wiley, 2009) pp. 1–27. https://doi.org/10.1002/9783527625345.ch1

  4. O. Arteaga, J. Sancho-Parramon, S. Nichols, B.M. Maoz, A. Canillas, S. Bosch, G. Markovich, B. Kahr, Relation between 2D/3D chirality and the appearance of chiroptical effects in real nanostructures. Opt. Express 24(3), 2242–2252 (2016)

    CAS  Google Scholar 

  5. P. Banzer, P. Woźniak, U. Mick, I. De Leon, R.W. Boyd, Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection. Nat. Commun. 7(1), 13117 (2016)

    CAS  Google Scholar 

  6. I. Zubritskaya, N. Maccaferri, X. Inchausti Ezeiza, P. Vavassori, A. Dmitriev, Magnetic control of the chiroptical plasmonic surfaces. Nano Lett. 18(1), 302–307 (2018)

    CAS  Google Scholar 

  7. N. Maccaferri, Coupling phenomena and collective effects in resonant meta-atoms supporting both plasmonic and (opto-) magnetic functionalities: an overview on properties and applications. JOSA B 36(7), 112–131 (2019)

    Google Scholar 

  8. G. Petrucci, A. Gabbani, I. Faniayeu, E. Pedrueza-Villalmanzo, G. Cucinotta, M. Atzori, A. Dmitriev, F. Pineider, Macroscopic magneto-chiroptical metasurfaces. Appl. Phys. Lett. 118(25), 251106 (2021)

    Google Scholar 

  9. L.A. Warning, A.R. Miandashti, L.A. McCarthy, Q. Zhang, C.F. Landes, S. Link, Nanophotonic approaches for chirality sensing. ACS Nano 15(10), 15538–15566 (2021)

    CAS  Google Scholar 

  10. A. Kakkanattu, N. Eerqing, S. Ghamari, F. Vollmer, Review of optical sensing and manipulation of chiral molecules and nanostructures with the focus on plasmonic enhancements. Opt. Express 29(8), 12543–12579 (2021)

    CAS  Google Scholar 

  11. Y. Yu, G. Yang, S. Zhang, M. Liu, S. Xu, C. Wang, M. Li, S.X.-A. Zhang, Wide-range and highly sensitive chiral sensing by discrete 2D chirality transfer on confined surfaces of Au(I)-thiolate nanosheets. ACS Nano 16(1), 148–159 (2021)

    Google Scholar 

  12. L.D. Barron, Symmetry and chirality: where physics shakes hands with chemistry and biology. Isr. J. Chem. 61(9–10), 517–529 (2021)

    CAS  Google Scholar 

  13. L.D. Barron, True and false chirality and absolute asymmetric synthesis. J. Am. Chem. Soc. 108(18), 5539–5542 (1986)

    CAS  Google Scholar 

  14. G. Witz, A. Stasiak, DNA supercoiling and its role in DNA decatenation and unknotting. Nucleic Acids Res. 38(7), 2119–2133 (2010)

    CAS  Google Scholar 

  15. S.C. Verma, Z. Qian, S.L. Adhya, Architecture of the Escherichia coli nucleoid. PLoS Genet. 15(12), 1008456 (2019)

    Google Scholar 

  16. Y. Mitsui, R. Langridge, B.E. Shortle, C.R. Cantor, R.C. Grant, M. Kodama, R.D. Wells, Physical and enzymatic studies on poly d(I-C)–poly d(I-C), an unusual double-helical DNA. Nature 228(5277), 1166–1169 (1970)

    CAS  Google Scholar 

  17. F.M. Pohl, T.M. Jovin, Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (DG-DC). J. Mol. Biol. 67(3), 375–396 (1972)

    CAS  Google Scholar 

  18. S. Ravichandran, V.K. Subramani, K.K. Kim, Z-DNA in the genome: from structure to disease. Biophys. Rev. 11(3), 383–387 (2019)

    CAS  Google Scholar 

  19. A. Suram, J.K. Rao, K. Latha, M. Viswamitra, First evidence to show the topological change of DNA from B-DNA to Z-DNA conformation in the hippocampus of Alzheimer’s brain. Neuromol. Med. 2(3), 289–297 (2002)

    CAS  Google Scholar 

  20. E. Lafer, R. Valle, A. Möller, A. Nordheim, P. Schur, A. Rich, B. Stollar, Z-DNA-specific antibodies in human systemic lupus erythematosus. J. Clin. Investig. 71(2), 314–321 (1983)

    CAS  Google Scholar 

  21. M.K. Kathiravan, M.M. Khilare, K. Nikoomanesh, A.S. Chothe, K.S. Jain, Topoisomerase as target for antibacterial and anticancer drug discovery. J. Enzyme Inhib. Med. Chem. 28(3), 419–435 (2013)

    CAS  Google Scholar 

  22. M. Airoldi, G. Barone, G. Gennaro, A.M. Giuliani, M. Giustini, Interaction of doxorubicin with polynucleotides. A spectroscopic study. Biochemistry 53(13), 2197–2207 (2014)

    CAS  Google Scholar 

  23. M. Liu, L. Zhang, T. Wang, Supramolecular chirality in self-assembled systems. Chem. Rev. 115(15), 7304–7397 (2015)

    CAS  Google Scholar 

  24. M. Blum, K. Feistel, T. Thumberger, A. Schweickert, The evolution and conservation of left–right patterning mechanisms. Development 141(8), 1603–1613 (2014)

    CAS  Google Scholar 

  25. T. Nakamura, H. Hamada, Left-right patterning: conserved and divergent mechanisms. Development 139(18), 3257–3262 (2012)

    CAS  Google Scholar 

  26. C. Géminard, N. González-Morales, J.-B. Coutelis, S. Noselli, The myosin ID pathway and left-right asymmetry in Drosophila. Genesis 52(6), 471–480 (2014)

    Google Scholar 

  27. V. Goss, A. Cazenave-Gassiot, A. Pringle, A. Postle, Investigation of isoprostanes as potential biomarkers for Alzheimer’s disease using chiral LC–MS/MS and SFC–MS/MS. Curr. Anal. Chem. 10(1), 121–131 (2014)

    CAS  Google Scholar 

  28. M. Thamim, K. Thirumoorthy, Chiral discrimination in a mutated IDH enzymatic reaction in cancer: a computational perspective. Eur. Biophys. J. 49(7), 549–559 (2020)

    CAS  Google Scholar 

  29. R. Huang, K. Shen, Q. He, Y. Hu, C. Sun, C. Guo, Y. Pan, Metabolic profiling of urinary chiral amino-containing biomarkers for gastric cancer using a sensitive chiral chlorine-labeled probe by HPLC–MS/MS. J. Proteome Res. 20(8), 3952–3962 (2021)

    CAS  Google Scholar 

  30. R. Kimura, H. Tsujimura, M. Tsuchiya, S. Soga, N. Ota, A. Tanaka, H. Kim, Development of a cognitive function marker based on d-amino acid proportions using new chiral tandem LC–MS/MS systems. Sci. Rep. 10(1), 1–12 (2020)

    Google Scholar 

  31. C. Madeira, M.V. Lourenco, C. Vargas-Lopes, C.K. Suemoto, C.O. Brandão, T. Reis, R.E. Leite, J. Laks, W. Jacob-Filho, C.A. Pasqualucci, d-serine levels in Alzheimer’s disease: implications for novel biomarker development. Transl. Psychiatry 5(5), 561–561 (2015)

    Google Scholar 

  32. M.M. Di Fiore, A. Santillo, G. Chieffi Baccari, Current knowledge of d-aspartate in glandular tissues. Amino Acids 46, 1805–1818 (2014)

    Google Scholar 

  33. N. Fujii, T. Takata, N. Fujii, K. Aki, H. Sakaue, d-amino acids in protein: the mirror of life as a molecular index of aging. Biochim. Biophys. Acta Proteins Proteomics 1866(7), 840–847 (2018)

    CAS  Google Scholar 

  34. J.-P. Mothet, J.-M. Billard, L. Pollegioni, J.T. Coyle, J.V. Sweedler, Investigating brain d-serine: advocacy for good practices. Acta physiol. 226(1), 13257 (2019)

    Google Scholar 

  35. M. Han, M. Xie, J. Han, D. Yuan, T. Yang, Y. Xie, Development and validation of a rapid, selective, and sensitive LC–MS/MS method for simultaneous determination of d- and l-amino acids in human serum: application to the study of hepatocellular carcinoma. Anal. Bioanal. Chem. 410, 2517–2531 (2018)

    CAS  Google Scholar 

  36. J. Kalinina, J. Ahn, N.S. Devi, L. Wang, Y. Li, J.J. Olson, M. Glantz, T. Smith, E.L. Kim, A. Giese, Selective detection of the d-enantiomer of 2-hydroxyglutarate in the CSF of glioma patients with mutated isocitrate dehydrogenase. Clin. Cancer Res. 22(24), 6256–6265 (2016)

    CAS  Google Scholar 

  37. J.J. Bastings, H.M. Eijk, S.W. Olde Damink, S.S. Rensen, d-amino acids in health and disease: a focus on cancer. Nutrients 11(9), 2205 (2019)

    CAS  Google Scholar 

  38. M. Suzuki, J. Sasabe, Y. Miyoshi, K. Kuwasako, Y. Muto, K. Hamase, M. Matsuoka, N. Imanishi, S. Aiso, Glycolytic flux controls d-serine synthesis through glyceraldehyde-3-phosphate dehydrogenase in astrocytes. Proc. Natl Acad. Sci. USA 112(17), 2217–2224 (2015)

    Google Scholar 

  39. J. Sasabe, Y. Miyoshi, M. Suzuki, M. Mita, R. Konno, M. Matsuoka, K. Hamase, S. Aiso, d-amino acid oxidase controls motoneuron degeneration through d-serine. Proc. Natl Acad. Sci. USA 109(2), 627–632 (2012)

    CAS  Google Scholar 

  40. T. Kimura, K. Hamase, Y. Miyoshi, R. Yamamoto, K. Yasuda, M. Mita, H. Rakugi, T. Hayashi, Y. Isaka, Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease. Sci. Rep. 6(1), 1–7 (2016)

    CAS  Google Scholar 

  41. W.G. North, G. Gao, V.A. Memoli, R.H. Pang, L. Lynch, Breast cancer expresses functional NMDA receptors. Breast Cancer Res. Treat. 122(2), 307–314 (2010)

    CAS  Google Scholar 

  42. F. Cava, H. Lam, M.A. De Pedro, M.K. Waldor, Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cell. Mol. Life Sci. 68(5), 817–831 (2011)

    CAS  Google Scholar 

  43. T. Eriksson, S. Björkman, P. Höglund, Clinical pharmacology of thalidomide. Eur. J. Clin. Pharmacol. 57, 365–376 (2001)

    CAS  Google Scholar 

  44. H. Tsuchiya, Stereospecificity in membrane effects of catechins. Chemico-biol. Interact. 134(1), 41–54 (2001)

    CAS  Google Scholar 

  45. K.F. Morris, E.J. Billiot, F.H. Billiot, J.A. Ingle, S.R. Zack, K.B. Krause, K.B. Lipkowitz, W.M. Southerland, Y. Fang, Investigation of chiral recognition by molecular micelles with molecular dynamics simulations. J. Dispers. Sci. Technol. 39(1), 45–54 (2018)

    CAS  Google Scholar 

  46. W.R. Bowen, R.R. Nigmatullin, Membrane-assisted chiral resolution of pharmaceuticals: ibuprofen separation by ultrafiltration using bovine serum albumin as chiral selector. Sep. Sci. Technol. 37(14), 3227–3244 (2002)

    CAS  Google Scholar 

  47. H.S. Martin, K.A. Podolsky, N.K. Devaraj, Probing the role of chirality in phospholipid membranes. ChemBioChem 22(22), 3148–3157 (2021)

    CAS  Google Scholar 

  48. T. Ishigami, K. Suga, H. Umakoshi, Chiral recognition of l-amino acids on liposomes prepared with l-phospholipid. ACS Appl. Mater. Interfaces 7(38), 21065–21072 (2015)

    CAS  Google Scholar 

  49. Y. Okamoto, Y. Kishi, K. Suga, H. Umakoshi, Induction of chiral recognition with lipid nanodomains produced by polymerization. Biomacromolecules 18(4), 1180–1188 (2017)

    CAS  Google Scholar 

  50. Y. Okamoto, Y. Kishi, T. Ishigami, K. Suga, H. Umakoshi, Chiral selective adsorption of ibuprofen on a liposome membrane. J. Phys. Chem. B 120(10), 2790–2795 (2016)

    CAS  Google Scholar 

  51. T. Ishigami, A. Tauchi, K. Suga, H. Umakoshi, Effect of boundary edge in DOPC/DPPC/cholesterol liposomes on acceleration of l-histidine preferential adsorption. Langmuir 32(24), 6011–6019 (2016)

    CAS  Google Scholar 

  52. P. Gusain, S. Ohki, K. Hoshino, Y. Tsujino, N. Shimokawa, M. Takagi, Chirality-dependent interaction of d- and l-menthol with biomembrane models. Membranes 7(4), 69 (2017)

    Google Scholar 

  53. H. Takase, K. Suga, H. Matsune, H. Umakoshi, K. Shiomori, Preferential adsorption of l-tryptophan by l-phospholipid coated porous polymer particles. Colloids Surf. B 216, 112535 (2022)

    CAS  Google Scholar 

  54. W.M. Penny, C.P. Palmer, Sphingomyelin ability to act as chiral selector using nanodisc electrokinetic chromatography. Chem. Phys. Lipids 214, 11–14 (2018)

    CAS  Google Scholar 

  55. H. Tsuchiya, M. Mizogami, The membrane interaction of drugs as one of mechanisms for their enantioselective effects. Med. Hypotheses 79(1), 65–67 (2012)

    CAS  Google Scholar 

  56. A. Guglielmelli, R. Bartucci, B. Rizzuti, G. Palermo, R. Guzzi, G. Strangi, The interaction of tryptophan enantiomers with model membranes is modulated by polar head type and physical state of phospholipids. Colloids Surf. B 224, 113216 (2023)

    CAS  Google Scholar 

  57. T. Sun, D. Han, K. Rhemann, L. Chi, H. Fuchs, Stereospecific interaction between immune cells and chiral surfaces. J. Am. Chem. Soc. 129(6), 1496–1497 (2007)

    CAS  Google Scholar 

  58. X. Yao, Y. Hu, B. Cao, R. Peng, J. Ding, Effects of surface molecular chirality on adhesion and differentiation of stem cells. Biomaterials 34(36), 9001–9009 (2013)

    CAS  Google Scholar 

  59. X. Dou, B. Wu, J. Liu, C. Zhao, M. Qin, Z. Wang, H. Schonherr, C. Feng, Effect of chirality on cell spreading and differentiation: from chiral molecules to chiral self-assembly. ACS Appl. Mater. Interfaces 11(42), 38568–38577 (2019)

    CAS  Google Scholar 

  60. X. Zhao, L. Xu, M. Sun, W. Ma, X. Wu, C. Xu, H. Kuang, Tuning the interactions between chiral plasmonic films and living cells. Nat. Commun. 8(1), 2007 (2017)

    Google Scholar 

  61. M. Sun, L. Xu, A. Qu, P. Zhao, T. Hao, W. Ma, C. Hao, X. Wen, F.M. Colombari, A.F. Moura, Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem. 10(8), 821–830 (2018)

    CAS  Google Scholar 

  62. F. Li, S. Li, X. Guo, Y. Dong, C. Yao, Y. Liu, Y. Song, X. Tan, L. Gao, D. Yang, Chiral carbon dots mimicking topoisomerase I to mediate the topological rearrangement of supercoiled DNA enantioselectively. Angew. Chem. 59(27), 11087–11092 (2020)

    CAS  Google Scholar 

  63. J. Kumar, H. Eraña, E. López-Martínez, N. Claes, V.F. Martín, D.M. Solís, S. Bals, A.L. Cortajarena, J. Castilla, L.M. Liz-Marzán, Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc. Natl Acad. Sci. USA 115(13), 3225–3230 (2018)

    CAS  Google Scholar 

  64. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F.C. Simmel, A.O. Govorov, T. Liedl, DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483(7389), 311–314 (2012)

    CAS  Google Scholar 

  65. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. Mikhaylovskiy, A. Lapthorn, S. Kelly, L. Barron, N. Gadegaard, M. Kadodwala, Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5(11), 783–787 (2010)

    CAS  Google Scholar 

  66. A. Guglielmelli, G. Nicoletta, L. Valente, G. Palermo, G. Strangi, Numerical modeling of 3D chiral metasurfaces for sensing applications. Crystals 12(12), 1804 (2022)

    CAS  Google Scholar 

  67. G. Palermo, G.E. Lio, M. Esposito, L. Ricciardi, M. Manoccio, V. Tasco, A. Passaseo, A. De Luca, G. Strangi, Biomolecular sensing at the interface between chiral metasurfaces and hyperbolic metamaterials. ACS Appl. Mater. Interfaces 12(27), 30181–30188 (2020)

    CAS  Google Scholar 

  68. H.-H. Jeong, A.G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, P. Fischer, Dispersion and shape engineered plasmonic nanosensors. Nat. Commun. 7(1), 11331 (2016)

    CAS  Google Scholar 

  69. N. Maccaferri, K.E. Gregorczyk, T.V. De Oliveira, M. Kataja, S. Van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, P. Vavassori, Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nat. Commun. 6(1), 6150 (2015)

    CAS  Google Scholar 

  70. M. Manoccio, M. Esposito, E. Primiceri, A. Leo, V. Tasco, M. Cuscunà, D. Zuev, Y. Sun, G. Maruccio, A. Romano, Femtomolar biodetection by a compact core–shell 3D chiral metamaterial. Nano Lett. 21(14), 6179–6187 (2021)

    CAS  Google Scholar 

  71. Y. Tang, A.E. Cohen, Optical chirality and its interaction with matter. Phys. Rev. Lett. 104(16), 163901 (2010)

    Google Scholar 

  72. Y. Tang, A.E. Cohen, Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332(6027), 333–336 (2011)

    CAS  Google Scholar 

  73. M.L. Solomon, A.A. Saleh, L.V. Poulikakos, J.M. Abendroth, L.F. Tadesse, J.A. Dionne, Nanophotonic platforms for chiral sensing and separation. Acc. Chem. Res. 53(3), 588–598 (2020)

    CAS  Google Scholar 

  74. R. Tullius, A.S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L.D. Barron, V.M. Rotello, G. Cooke, A. Lapthorn, M. Kadodwala, “Superchiral’’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures. J. Am. Chem. Soc. 137(26), 8380–8383 (2015)

    CAS  Google Scholar 

  75. D.J. Koyroytsaltis-McQuire, C. Gilroy, L.D. Barron, N. Gadegaard, A.S. Karimullah, M. Kadodwala, Detecting antibody–antigen interactions with chiral plasmons: factors influencing chiral plasmonic sensing. Adv. Photonics Res. 3(1), 2100155 (2022)

    Google Scholar 

  76. M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2(3), 031010 (2012)

    Google Scholar 

  77. M. Schäferling, X. Yin, H. Giessen, Formation of chiral fields in a symmetric environment. Opt. Express 20(24), 26326–26336 (2012)

    Google Scholar 

  78. E. Petronijevic, E.M. Sandoval, M. Ramezani, C.L. Ordonez-Romero, C. Noguez, F.A. Bovino, C. Sibilia, G. Pirruccio, Extended chiro-optical near-field response of achiral plasmonic lattices. J. Phys. Chem. C 123(38), 23620–23627 (2019)

    CAS  Google Scholar 

  79. E. Petronijevic, A. Belardini, G. Leahu, R.L. Voti, C. Sibilia, Nanostructured materials for circular dichroism and chirality at the nanoscale: towards unconventional characterization. Opt. Mater. Express 12(7), 2724–2746 (2022)

    CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge financial support from the “NLHT - Nanoscience Laboratory for Human Technologies” (POR Calabria FESR-FSE 14/20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Strangi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Giuseppe Strangi was an editor of this journal during the review and decision stage. For the MRS Communications policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guglielmelli, A., Palermo, G. & Strangi, G. Unveiling chirality: Exploring nature’s blueprint for engineering plasmonic materials. MRS Communications 13, 704–713 (2023). https://doi.org/10.1557/s43579-023-00445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00445-z

Keywords

Navigation