Skip to main content
Log in

Electrochemical performance of ZnMgO photoanodes prepared by a green synthesis route

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Mesoporous ZnMgO nanopowders with varying Mg compositions (0 ≤ x ≤ 0.15) were synthesized via a green synthesis method using Psidium Guajava leaf extract. X-ray diffraction confirms a 10% solubility of Mg in ZnO and a preservation of the wurtzite phase. The 5% Mg doped ZnO sample shows a higher electrochemical performance with an electron lifetime of 35.63 µs and a phase angle of − 2.263° and correlated to the particle size, surface area, and the oxygen vacancy concentration, which is determined both from the phonon correlation length of the E2(high) Raman and the defect emission band measured from photoluminescence spectroscopy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data and material will be available on request.

References

  1. S. Esakki, R. Devi, The Preparation of Dye Sensitized Solar Cells (DSSC) using natural dyes extracted from Terminalia Cattappa Leaves based on Mg doped ZnO as Photoanode. (2021) 1–28.

  2. G. Gupta, S. Verma, R. Nagarajan, S. Rath, Microstructural and bandgap investigations of wurtzite-phase ZnMgO nanopowders synthesized by ball-milling. Physica B 604, 412735 (2021)

    Article  CAS  Google Scholar 

  3. C. Fu Lin, C. Haur Kao, C. Yu Lin, Y. Wen Liu, C. Hsiang Wang, The electrical and physical characteristics of Mg-doped ZnO sensing membrane in EIS (electrolyte-insulator-semiconductor) for glucose sensing applications. Res. Phys. 16, 102976 (2020)

    Google Scholar 

  4. C.J. Raj, K. Prabakar, S.N. Karthick, K.V. Hemalatha, M.-K. Son, H.-J. Kim, Banyan root structured Mg-doped ZnO photoanode dye-sensitized solar cells. J. Phys. Chem. C 117, 2600–2607 (2013)

    Article  CAS  Google Scholar 

  5. P. Sahoo, A. Sharma, S. Padhan, R. Thangavel, Visible light driven photosplitting of water using one dimensional Mg doped ZnO nanorod arrays. Int. J. Hydrogen Energy 45, 22576–22588 (2020)

    Article  CAS  Google Scholar 

  6. E. Indrajith Naik, T.S. Sunil Kumar Naik, E. Pradeepa, S. Singh, H.S.B. Naik, Design and fabrication of an innovative electrochemical sensor based on Mg-doped ZnO nanoparticles for the detection of toxic catechol. Mater. Chem. Phys. 281, 125860 (2022)

    Article  CAS  Google Scholar 

  7. S.D. Bukkitgar, N.P. Shetti, R.M. Kulkarni, K.R. Reddy, S.S. Shukla, V.S. Saji, T.M. Aminabhavi, Electro-catalytic behavior of Mg-Doped ZnO nano-flakes for oxidation of anti-inflammatory drug. J. Electrochem. Soc. 166, B3072–B3078 (2019)

    Article  CAS  Google Scholar 

  8. J. Fang, H. Fan, H. Tian, G. Dong, Morphology control of ZnO nanostructures for high efficient dye-sensitized solar cells. Mater. Charact. 108, 51–57 (2015)

    Article  CAS  Google Scholar 

  9. H. Ghannam, J.P.B. Silva, A. Chahboun, Effect of ZnO surface morphology on its electrochemical performance. RSC Adv. 11, 23346–23354 (2021)

    Article  CAS  Google Scholar 

  10. L. Dupuy, S. Haller, J. Rousset, F. Donsanti, J.F. Guillemoles, D. Lincot, F. Decker, Impedance measurements of nanoporosity in electrodeposited ZnO films for DSSC. Electrochem. Commun. 12, 697–699 (2010)

    Article  CAS  Google Scholar 

  11. M. Parthasarathy, N.S. Ramgir, B.R. Sathe, I.S. Mulla, V.K. Pillai, Surface-state-mediated electron transfer at nanostructured ZnO multipod/electrolyte interfaces. J. Phys. Chem. C. 111, 13092–13102 (2007)

    Article  CAS  Google Scholar 

  12. A.R.C. Bredar, A.L. Chown, A.R. Burton, B.H. Farnum, Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl. Energy Mater. 3, 66–98 (2020)

    Article  CAS  Google Scholar 

  13. M. Yilmaz, K.Ç. Demir, G. Turgut, S. Aydogan, Electrochemical impedance spectroscopy analysis of ZnO films: the effect of Mg doping. Philos. Mag. Lett. 99, 243–252 (2019)

    Article  CAS  Google Scholar 

  14. C.J. Raj, S.N. Karthick, K.V. Hemalatha, M.K. Son, H.J. Kim, K. Prabakar, Magnesium doped ZnO nanoparticles embedded ZnO nanorod hybrid electrodes for dye sensitized solar cells. J. Sol-Gel Sci. Technol. 62, 453–459 (2012)

    Article  Google Scholar 

  15. E.R. Segnit, A.E. Holland, The system MgO-ZnO-SiO2. J. Am. Ceram. Soc. 48, 409–413 (1965)

    Article  CAS  Google Scholar 

  16. N. Klimic, L. Arda, S. Ozturk, Z.Z. Ozturk, Structure and electrical properties of Mg-doped ZnO nanoparticles. Cryst. Res. Technol. 45, 529–538 (2010)

    Article  Google Scholar 

  17. M. Ghosh, A.K. Raychaudhuri, Structural and optical properties of Zn1-xMgxO nanocrystals obtained by low temperature method. J. Appl. Phys. 100, 34315 (2006)

    Article  Google Scholar 

  18. Y.-I. Kim, K. Page, A.M. Limarga, D.R. Clarke, R. Seshadri, Evolution of local structures in polycrystalline Zn1-xMgxO (0≤x≤015) studied by Raman spectroscopy and synchrotron x-ray pair-distribution-function analysis. Phys. Rev. B. 76, 115204 (2007)

    Article  Google Scholar 

  19. V. Ramya, V. Kalaiselvi, S.K. Kannan, M. Shkir, H.A. Ghramh, Z. Ahmad, P. Nithiya, N. Vidhya, Facile synthesis and characterization of Zinc Oxide nanoparticles using Psidium guajava leaf extract and their antibacterial applications, Arab J. Sci. Eng. (2021).

  20. R. Saha, K. Subramani, S.A.K.P.M. Raju, S. Rangaraj, R. Venkatachalam, Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Prog. Org. Coat. 124, 80–91 (2018)

    Article  CAS  Google Scholar 

  21. G. Gupta, S. Rath, Microstructural investigations of green-synthesized wurtzite-phase ZnMgO nanopowders and their defect-mediated ferromagnetism. Mater. Res. Bull. 148, 111671 (2022)

    Article  CAS  Google Scholar 

  22. L. Umaralikhan, M.J.M. Jaffar, Green synthesis of ZnO and Mg doped ZnO nanoparticles, and its optical properties. J. Mater. Sci. 28, 7677–7685 (2017)

    CAS  Google Scholar 

  23. V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Interfaces. 4, 2717–2725 (2012)

    Article  CAS  Google Scholar 

  24. C. Osorio, J.G. Carriazo, H. Barbosa, Thermal and structural study of guava (Psidium guajava L.) powders obtained by two dehydration methods. Quim. Nova. 34, 636–640 (2011)

    Article  CAS  Google Scholar 

  25. U. Einhorn-Stoll, H. Kunzek, The influence of the storage conditions heat and humidity on conformation, state transitions and degradation behaviour of dried pectins. Food Hydrocoll. 23, 856–866 (2009)

    Article  CAS  Google Scholar 

  26. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123–134 (2014)

    Article  Google Scholar 

  27. Q. He, Y. Yang, On lattice distortion in high entropy alloys. Front. Mater. 5, 1–8 (2018)

    Article  Google Scholar 

  28. F. Ambroz, T.J. Macdonald, V. Martis, I.P. Parkin, Evaluation of the BET theory for the characterization of meso and microporous MOFs. Small Methods. 2, 1800173 (2018)

    Article  Google Scholar 

  29. H.S. Salem, G.V. Chilingarian, Determination of specific surface area and mean grain size from well-log data and their influence on the physical behavior of offshore reservoirs. J. Pet. Sci. Eng. 22, 241–252 (1999)

    Article  CAS  Google Scholar 

  30. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  CAS  Google Scholar 

  31. P. More, V. Inamdar, S. Suresh, S. Dindorkar, S. Peddakolmi, K. Jain, N. Khona, S. Khatoon, S. Patange, Synthesis of zinc oxide nanoparticles using Chrysopogonzizanioidesgrass extract, its applications in Photodegradation and Antimicrobial Activity, In Review, 2021.

  32. H.D. Shelke, A.C. Lokhande, J.H. Kim, C.D. Lokhande, Photoelectrochemical (PEC) studies on Cu2SnS3 (CTS) thin films deposited by chemical bath deposition method. J. Colloid Interface Sci. 506, 144–153 (2017)

    Article  CAS  Google Scholar 

  33. A. Sulciute, K. Nishimura, E. Gilshtein, F. Cesano, G. Viscardi, A.G. Nasibulin, Y. Ohno, S. Rackauskas, ZnO Nanostructures application in electrochemistry: influence of morphology. J. Phys. Chem. C. 125, 1472–1482 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Gaurav Gupta thanks DST INSPIRE Fellowship for a Senior Research Fellowship (Ref No. DST/AORC-IF/UPGRD/IF170870). Nisha Bala thanks UGC for Senior Research Fellowship (REF. No. 22/06/2014(i)EU-V). Funding from IoE Grant No. Ref. No./IoE/2021/12/FRP is acknowledged. The authors are thankful to CEF, Department of Physics and Astrophysics and USIC, University of Delhi for XRD, TGA and BET facilities. We thank Shikha Verma and Santosh Choudhury for the photoluminescence measurements.

Author information

Authors and Affiliations

Authors

Contributions

GG: Writing—original draft, Conceptualization, Methodology, Investigation, Formal analysis, Writing—review and editing. NB: Investigation, Formal analysis, Writing—review and editing. SR: Supervision, Funding, Conceptualization, Methodology, Investigation, Formal analysis, Writing—review and editing, Supervision.

Corresponding author

Correspondence to Shyama Rath.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Statement of human and animal rights

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, G., Bala, N. & Rath, S. Electrochemical performance of ZnMgO photoanodes prepared by a green synthesis route. MRS Communications 13, 1196–1202 (2023). https://doi.org/10.1557/s43579-023-00422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00422-6

Keywords

Navigation