Skip to main content

Advertisement

Log in

Magnesium doped ZnO nanoparticles embedded ZnO nanorod hybrid electrodes for dye sensitized solar cells

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We report a novel type of Mg doped ZnO nanoparticles (ZMP) embedded on hydrothermally grown ZnO nanorod (ZR) based photoanode dye sensitized solar cells. The crystallinity, composition and morphology of the photoanodes were characterized by using X-ray diffraction analysis, X-ray photoelectron spectroscopy and scanning electron microscopy. The amount of dye absorbed in the photoanode was observed using UV visible spectral analysis. The improved internal resistance and charge-transfer kinetics of the fabricated cells were analyzed using electrochemical impedance spectroscopy. The ZMP embedded electrode of low thickness (~2.5 μm) gained an enhanced short-circuit current density of 8.56 mA/cm2, open-circuit photo voltage of 0.71 V, fill factor of 0.51, and overall conversion efficiency of 2.91 % under 1 sun illumination. This shows high conversion efficiency and performance than that of ZnO nanorod (η ~ 0.22 %) and bare ZnO nanoparticles (ZP) embedded ZnO nanorod (η ~ 1.04 %) based cells. The presence of Mg ions in the ZnO nanoparticle hinders the interfacial recombination of the photo-excited electrons with the electrolyte and also shows better dye absorption than that of ZR. These factors can significantly enhance solar-cell performance and increase the efficiency of the ZMP based dye sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459

    Article  CAS  Google Scholar 

  2. Martinson ABF, Elam JW, Hupp JT, Pellin MJ (2007) ZnO nanotube based dye-sensitized solar cells. Nano Lett 7:2183–2187

    Article  CAS  Google Scholar 

  3. Bisquert J, Cahen D, Hodes G, Ruhle S, Zaban A (2004) Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B 108:8106–8118

    Article  CAS  Google Scholar 

  4. Benkstein KD, Kopidakis N, Lagemaat JV, Frank AJ (2003) Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J Phys Chem B 107:7759–7767

    Article  CAS  Google Scholar 

  5. Turner GM, Beard MC, Schmuttenmaer CA (2002) Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide. J Phys Chem B 106:11716–11719

    Article  CAS  Google Scholar 

  6. Lagemaat JVD, Frank AJ (2001) Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J Phys Chem B 105:11194–11205

    Article  Google Scholar 

  7. Zhang Q, Dandeneau CS, Zhou X, Cao G (2009) ZnO nanostructures for dye-sensitized solar cells. Adv Mater 21:4087–4108

    Article  CAS  Google Scholar 

  8. Yong SY, Zhang Q, Park K, Dandeneau CS, Zhou X, Triampo D, Cao G (2010) ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells. Appl Phys Lett 96:073115–073117

    Article  Google Scholar 

  9. Baxter JB, Aydil ES (2006) Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol Energy Mater Sol Cells 90:607–622

    Article  CAS  Google Scholar 

  10. Chen W, Zhang H, Hsing IM, Yang S (2009) A new photoanode architecture of dye sensitized solar cell based on ZnO nanotetrapods with no need for calcinations. Electrochem Commun 11:1057–1060

    Article  CAS  Google Scholar 

  11. Keis K, Lindgren J, Lindquist S-E, Hagfeldt A (2000) Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir 16:4688–4694

    Article  CAS  Google Scholar 

  12. Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004) Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J Phys Chem B 108:4818–4822

    Article  CAS  Google Scholar 

  13. Zhang Q, Dandeneau CS, Candelaria S, Liu D, Garcia BB, Zhou X, Jeong YH, Cao G (2010) Effects of lithium ions on dye-sensitized ZnO aggregate solar cells. Chem Mater 22:2427–2433

    Article  CAS  Google Scholar 

  14. de Souza GA, Davolos MR, Masaki N, Yanagida S, Morandeira A, Durrant JR, Freitas JN, Nogueira AF (2008) Synthesis and characterization of ZnO and ZnO:Ga films and their application in dye-sensitized solar cells. Dalton Trans 11:1487–1491

    Google Scholar 

  15. Shin YJ, Lee JH, Park JH, Park NG (2007) Enhanced photovoltaic properties of SiO2-treated ZnO nanocrystalline electrode for dye-sensitized solar cell. Chem Lett 36:1506–1507

    Article  CAS  Google Scholar 

  16. Prabakar K, Son M, Kim W-Y, Kim H (2011) TiO2 thin film encapsulated ZnO nanorod and nanoflower dye sensitized solar cells. Mater Chem Phys 125:12–14

    Article  CAS  Google Scholar 

  17. Ohtomo A, Tamura K, Kawasaki M, Makino T, Segawa Y, Tang ZK, Wong GKL, Matsumoto Y, Koinuma H (2000) Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices. Appl Phys Lett 77:2204–2206

    Article  CAS  Google Scholar 

  18. Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T, Segawa Y (1998) MgxZn1−xO as a II–VI widegap semiconductor alloy. Appl Phys Lett 72:2466–2468

    Article  CAS  Google Scholar 

  19. Ku CH, Wu JJ (2007) Chemical bath deposition of ZnO nanowire–nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology 18:505706–505714

    Article  Google Scholar 

  20. Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325–333

    Article  CAS  Google Scholar 

  21. Adachi M, Sakamoto M, Jiu J, Ogata Y, Isoda S (2006) Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J Phys Chem B 110:13872–13880

    Article  CAS  Google Scholar 

  22. Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A (2005) Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol Energy Mater Sol Cells 87:117–131

    Article  CAS  Google Scholar 

  23. Hoshikawa T, Kikuchi R, Sasaki K, Eguchi K (2002) Impedance analysis of electronic transport in dye-sensitized solar cells. Eletrochemistry 70:675–680

    CAS  Google Scholar 

  24. Hoshikawa T, Yamada M, Kikuchi R, Eguchi K (2005) Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells. J Eletrochem Soc 152:E68–E73

    Article  CAS  Google Scholar 

  25. Bisquert J (2003) Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys Chem Chem Phys 5:5360–5364

    Article  CAS  Google Scholar 

  26. Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR (2002) Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. Chem Commun 14:1464–1465

    Article  Google Scholar 

  27. Koh JK, Kim J, Kim B, Kim JH, Kim E (2011) Highly efficient, iodine-free dye-sensitized solar cells with solid-state synthesis of conducting polymers. Adv Mater 23:1641–1646

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author C.J.R would like to thank the BRAIN KOREA21 (BK21) for its financial support. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0009749).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Prabakar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Justin Raj, C., Karthick, S.N., Hemalatha, K.V. et al. Magnesium doped ZnO nanoparticles embedded ZnO nanorod hybrid electrodes for dye sensitized solar cells. J Sol-Gel Sci Technol 62, 453–459 (2012). https://doi.org/10.1007/s10971-012-2748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2748-0

Keywords

Navigation