Skip to main content
Log in

Hybrid perovskite quantum dot-MWCNTs gas sensor for selective ethanol sensing

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Quantum dots and carbon nanotubes are advanced nanomaterials that show excellent electrical, mechanical, and optical characteristics. This paper proposes perovskite quantum dots (PQDs) grown on the lattice of Multi-Wall Carbon Nanotubes (MWCNTs) as an efficient gas sensor. The developed sensor shows ethanol selectivity when tested with methanol, hexane, benzene, and ethyl acetate at room temperature. It exhibited fast response and recovery times of 15.17 and 2.64 s, respectively, at 10 ppm ethanol with 90% relative humidity. Essential sensor characteristics like sensitivity, stability, repeatability, and scalability are achieved in these sensors. These remarkable sensor characteristics make PQDs/MWCNTs highly attractive for real-world ethanol monitoring applications at ambient temperature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. D.W. Lachenmeier, Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. J. Occup. Med. Toxicol. 3, 26 (2008). https://doi.org/10.1186/1745-6673-3-26

    Article  CAS  Google Scholar 

  2. L. Wu et al., Ce-doped LaCoO3 film as a promising gas sensor for ethanol. AIP Adv. 11, 055305 (2021). https://doi.org/10.1063/5.0049923

    Article  CAS  Google Scholar 

  3. W. Yude, S. Xiaodan, L. Yanfeng, Z. Zhenlai, W. Xinghui, Perovskite-type NiSnO3 used as the ethanol sensitive material. Solid State Electron. 44, 2009–2014 (2000). https://doi.org/10.1016/S0038-1101(00)00151-9

    Article  Google Scholar 

  4. P. Song et al., The structure, electrical and ethanol-sensing properties of La1-xPbxFeO3 perovskite ceramics with x ≤ 0.3. Sens. Actuators B Chem. 104, 312–316 (2005). https://doi.org/10.1016/j.snb.2004.05.023

    Article  CAS  Google Scholar 

  5. W. Haron, A. Wisitsoraat, S. Wongnawa, Nanostructured perovskite oxides – LaMO3 (M=Al Co, Fe) prepared by co-precipitation method and their ethanol-sensing characteristics. Ceram. Int. 43, 5032–5040 (2017). https://doi.org/10.1016/j.ceramint.2017.01.013

    Article  CAS  Google Scholar 

  6. H. Zhang, J. Yi, Enhanced ethanol gas sensing performance of ZnO nanoflowers decorated with LaMnO3 perovskite nanoparticles. Mater. Lett. 216, 196–198 (2018). https://doi.org/10.1016/j.matlet.2018.01.018

    Article  CAS  Google Scholar 

  7. K. Lee et al., Ultrasensitive Detection of hydrogen sulfide gas based on perovskite vertical channel chemo-sensor. Sens. Actuators B. Chem. 336, 128988 (2020). https://doi.org/10.1016/j.snb.2020.128988

    Article  CAS  Google Scholar 

  8. V.X. Hien, P.T. Hung, P.J. Han, S. Lee, J.-H. Lee, Y.-W. Heo, Growth and gas sensing properties of methylammonium tin iodide thin film. Scr. Mater. 178, 108–113 (2020). https://doi.org/10.1016/j.scriptamat.2019.10.049

    Article  CAS  Google Scholar 

  9. T.T. Nga Phan et al., Hierarchically structured LaFeO3 with hollow core and porous shell as efficient sensing material for ethanol detection. Sens. Actuators B Chem. 354, 131195 (2022). https://doi.org/10.1016/j.snb.2021.131195

    Article  CAS  Google Scholar 

  10. A. Nur’aini, I. Oh, Volatile organic compound gas sensors based on methylammonium lead iodide perovskite operating at room temperature. RSC Adv. 10, 12982–12987 (2020). https://doi.org/10.1039/c9ra10703g

    Article  CAS  Google Scholar 

  11. S. Pathak et al., Perovskite crystals for tunable white light emission. Chem. Mater. 27, 8066–8075 (2015). https://doi.org/10.1021/acs.chemmater.5b03769

    Article  CAS  Google Scholar 

  12. J. Li, P. Dwivedi, K.S. Kumar, T. Roy, K.E. Crawford, J. Thomas, Growing perovskite quantum dots on carbon nanotubes for neuromorphic optoelectronic computing. Adv. Electron. Mater. 7, 1–9 (2021). https://doi.org/10.1002/aelm.202000535

    Article  CAS  Google Scholar 

  13. S. Premkumar, K. Kundu, S. Umapathy, Impact of cesium in methylammonium lead bromide perovskites: insights into the microstructures, stability and photophysical properties. Nanoscale. 11, 10292–10305 (2019). https://doi.org/10.1039/c9nr02733e

    Article  CAS  Google Scholar 

  14. M. Fang et al., Stretchable and self-healable organometal halide perovskite nanocrystal- embedded polymer gels with enhanced luminescence stability. Nanophotonics. 7, 1949–1958 (2018). https://doi.org/10.1515/nanoph-2018-0126

    Article  CAS  Google Scholar 

  15. C. Xia, M. Leng, W. Tao, Q. Wang, Y. Gao, Q. Zhang, Polyaniline/carbon nanotube core-shell hybrid and redox active electrolyte for high-performance flexible supercapacitor. J. Mater. Sci. Mater. Electron. 30, 4427–4436 (2019). https://doi.org/10.1007/s10854-019-00731-4

    Article  CAS  Google Scholar 

  16. P.C. Babu, N. Sundaraganesan, Ö. Dereli, E. Türkkan, “FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular geometry of butylated hydroxy toluene”, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79(3), 562–569 (2011). https://doi.org/10.1016/j.saa.2011.03.034

    Article  CAS  Google Scholar 

  17. K.-H. Wang, L.-C. Li, M. Shellaiah, K. Wen Sun, Structural and photophysical properties of methylammonium lead tribromide (MAPbBr 3) single crystals. Sci. Rep. 7, 13643 (2017). https://doi.org/10.1038/s41598-017-13571-1

    Article  CAS  Google Scholar 

  18. B.P. Singh, S. Samal, S. Nayak, S.M. Majhi, L. Besra, S. Bhattacharjee, The production of a multi-walled carbon nanotube/hexamethylene diisocyanate nanocomposite coating on copper by electrophoretic deposition. Surf. Coat. Technol. 206, 1319–1326 (2011). https://doi.org/10.1016/j.surfcoat.2011.08.054

    Article  CAS  Google Scholar 

  19. K. Nakada, Y. Matsumoto, Y. Shimoi, Y. Koji, F. Yukio, Temperature-dependent evolution of raman spectra of methylammonium lead halide perovskites, CH3NH3PbX3 (X= I, Br). Molecules 24, 626 (2019). https://doi.org/10.3390/molecules24030626

    Article  CAS  Google Scholar 

  20. S. Gavazza dos Santos, M.B.A. Varesche, M. Zaiat, E. Foresti, Comparison of methanol, ethanol, and methane as electron donors for denitrification. Environ. Eng. Sci. 21(3), 313–320 (2004). https://doi.org/10.1089/109287504323066950

    Article  CAS  Google Scholar 

  21. L. Zhang, J.P. Song, H. Qin, M. Jiang, Electrical properties and ethanol-sensing characteristics of perovskite La1–XPbxFeO3. Sens. Actuators B Chem. 114, 836–840 (2006). https://doi.org/10.1016/j.snb.2005.08.002

    Article  CAS  Google Scholar 

  22. G. Huang et al., An effective and reliable fluorescent sensor for selective detection of methylamine gas based on in-situ formation of MAPbBr 3 perovskite nanocrystals in electrospun fibers. Sens. Actuators B Chem. 347, 130618 (2021). https://doi.org/10.1016/j.snb.2021.130618

    Article  CAS  Google Scholar 

  23. P. Hao, G. Qu, P. Song, Synthesis of Ba-doped porous LaFeO3 microspheres with perovskite structure for rapid detection of ethanol gas. Rare Met. 40, 651–1661 (2021). https://doi.org/10.1007/s12598-020-01672-2

    Article  CAS  Google Scholar 

  24. T. Liu et al., Ethanol sensor using gadolinia-doped ceria solid electrolyte and double perovskite structure sensing material. Sens. Actuators B Chem. 349, 130771 (2021). https://doi.org/10.1016/j.snb.2021.130771

    Article  CAS  Google Scholar 

  25. K. Suematsu, Y. Hiroyama, K. Watanabe, K. Shimanoe, Amplifying the receptor function on Ba0.9La0.1FeO3-SnO2 composite particle surface for high sensitivity toward ethanol gas sensing. Sens. Actuators B Chem. 354, 131256 (2022). https://doi.org/10.1016/j.snb.2021.131256

    Article  CAS  Google Scholar 

  26. T.T.N. Phan et al., Hierarchically structured LaFeO3 with hollow core and porous shell as efficient sensing material for ethanol detection. Sens. Actuators B Chem. 354, 131195 (2022). https://doi.org/10.1016/j.snb.2021.131195

    Article  CAS  Google Scholar 

  27. W. Jiao, J. He, L. Zhang, “Synthesis and high ammonia gas sensitivity of (CH3NH3)PbBr 3-xIx perovskite thin film at room temperature.” Sens. Actuators B Chem. 309, 127786 (2020). https://doi.org/10.1016/j.snb.2020.127786

    Article  CAS  Google Scholar 

  28. C. Doroftei, P.D. Popa, F. Iacomi, Selectivity between methanol and ethanol gas of La-Pb-Fe-O perovskite synthesized by novel method. Sens. Actuators A Phys. 190, 176–180 (2013). https://doi.org/10.1016/j.sna.2012.11.018

    Article  CAS  Google Scholar 

  29. L. Chen et al., Ethanol-sensing properties of SmFe1-x NixO3 perovskite oxides. Sens. Actuators, B Chem. 139, 407–410 (2009). https://doi.org/10.1016/j.snb.2009.02.074

    Article  CAS  Google Scholar 

  30. X. Liu et al., Preparation, electrical and gas-sensing properties of perovskite-type La1-XMgxFeO3 semiconductor materials. J. Phys. Chem. Solids. 68(4), 511–515 (2017). https://doi.org/10.1016/j.jpcs.2007.01.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JT acknowledges UCF Seed funding 63019A07/63019A11 for financial support.

Funding

University of Central Florida, 63019A07/63019A11, Jayan Thomas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayan Thomas.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, P., Li, J., Divyashree, P. et al. Hybrid perovskite quantum dot-MWCNTs gas sensor for selective ethanol sensing. MRS Communications 13, 1156–1162 (2023). https://doi.org/10.1557/s43579-023-00416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00416-4

Keywords

Navigation