Skip to main content
Log in

Investigation of doping effects of Ni to enhance photocatalytic activity of WO3 for advanced degradation of tetracycline in aqueous environment

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Ni was successfully doped into WO3 lattice to enhance its photocatalytic activity. The Ni dopants acted as nuclei during crystallization leading to Ni-WO3 crystal size increase. However, the doped Ni substituted several W6+ of the WO3 leading to lattice distortion preventing agglomeration of these formed crystals resulting in Ni-WO3 particle size decrease. Therefore, Ni-WO3 crystals were larger than WO3 crystals while Ni-WO3 particles were much smaller than WO3 particles. Finally, Ni dopants created a transitional level between conduction and valence bands of the WO3 to narrow its band gap and to increase charge separation to improve photocatalytic Tetracycline degradation efficiency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data Availability

The data supporting the findings of the study are available from the corresponding authors upon reasonable request.

References

  1. S.A. Kraemer, A. Ramachandran, G.G. Perron, Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 7, 180 (2019)

    Article  CAS  Google Scholar 

  2. S. Bazgir, S. Farhadi, Y. Mansourpanah, Adsorptive removal of tetracycline and ciprofloxacin antibiotics from water using magnetic MIL101-Fe metal–organic framework/NiFe2O4 decorated with Preyssler-Pope-Jeannin [NaP5W30O110]14− polyanion. J. Solid State Chem. 315, 123513 (2022)

    Article  CAS  Google Scholar 

  3. J. Hu, Y. Liu, G. Zhao, C. Sun, L. Wu, H. Wu, F. Jiao, Improvement of synergistic effect photocatalytic performance for efficient removal of tetracycline by the construction of double sulfide heterojunction. J. Alloy. Compd. 928, 167193 (2022)

    Article  CAS  Google Scholar 

  4. B. Cha, N. Kim, Y. Yea, J. Han, Y. Yoon, S. Kim, C.M. Park, Comprehensive evaluation of antibiotic tetracycline and oxytetracycline removal by Fe-metal organic framework/biopolymer-clay hydrogel. Ceram. Int. 49(8), 12201–12213 (2022)

    Article  Google Scholar 

  5. Z. Zhu, H. Xia, H. Li, Boosting photocatalytic degradation efficiency of tetracycline by a visible-light-activated NiMoO4/g-C3N4 heterojunction photocatalyst in the water environment. Solid State Sci. 139, 107164 (2023)

    Article  CAS  Google Scholar 

  6. L. Yang, Y. Liu, P. Tan, Y. Lu, Q. Ding, J. Pan, Anchoring TiO2@CsPbBr 3 on g-C3N4 nanosheet for enhanced photocatalytic degradation activity of tetracycline hydrochloride. Diam. Relat. Mater. 133, 109727 (2023)

    Article  CAS  Google Scholar 

  7. X. Zhang, H. Chen, S. Liu, B. Zhang, H. Zhu, H. Chen, B. Wen, L. Chen, Preparation of TiO2-graphitized carbon composite photocatalyst and their degradation properties for tetracycline antibiotics. J. Mol. Struct. 1270, 133897 (2022)

    Article  CAS  Google Scholar 

  8. F.-D. Wu, J.-C. Chen, J.-P. Hu, Synthesis of TiO2/Ti3C2Tx/AgI Z-scheme photocatalyst for tetracycline hydrochloride photocatalytic degradation. J. Environ. Chem. Eng. 10, 107117 (2022)

    Article  CAS  Google Scholar 

  9. S. Wu, X. Li, Y. Tian, Y. Lin, Y.H. Hu, Excellent photocatalytic degradation of tetracycline over black anatase-TiO2 under visible light. Chem. Eng. J. 406, 126747 (2021)

    Article  CAS  Google Scholar 

  10. N. Le Minh Tri, N.T.D. Cam, H.D. Pham, D. Van Thuan, T.-D. Pham, V.T. Nguyen, N.T. Trung, M.H.T. Tung, T.T.T. Phuong, T.T.P. Nguyen, C. Van Hoang, V.D. Dao, Development of g-C3N4/BiVO4 binary component heterojunction as an advanced visible light-responded photocatalyst for polluted antibiotics degradation. Topics in Catal. 63, 1206–1214 (2020)

    Article  Google Scholar 

  11. V. Dutta, S. Sharma, P. Raizada, V.K. Thakur, A.A.P. Khan, V. Saini, A.M. Asiri, P. Singh, An overview on WO3 based photocatalyst for environmental remediation. J. Environ. Chem. Eng. 9, 105018 (2021)

    Article  CAS  Google Scholar 

  12. J.C. Murillo-Sierra, M.D.L. Maya-Treviño, R.E. Nuñez-Salas, D.A. Pino-Sandoval, A. Hernández-Ramírez, Facile synthesis of ZnS/WO3 coupled photocatalyst and its application on sulfamethoxazole degradation. Ceram. Int. 48, 13761–13769 (2022)

    Article  CAS  Google Scholar 

  13. D. Zhang, Z. Liu, R. Mou, Preparation and characterization of WO3/ZnO composite photocatalyst and its application for degradation of oxytetracycline in aqueous solution. Inorg. Chem. Commun. 142, 109667 (2022)

    Article  CAS  Google Scholar 

  14. J. Piriyanon, P. Takhai, S. Patta, T. Chankhanittha, T. Senasu, S. Nijpanich, S. Juabrum, N. Chanlek, S. Nanan, Performance of sunlight responsive WO3/AgBr heterojunction photocatalyst toward degradation of Rhodamine B dye and ofloxacin antibiotic. Opt. Mater. 121, 111573 (2021)

    Article  CAS  Google Scholar 

  15. L. Hromádko, M. Motola, V. Čičmancová, R. Bulánek, J.M. Macak, Facile synthesis of WO3 fibers via centrifugal spinning as an efficient UV- and VIS-light-driven photocatalyst. Ceram. Int. 47, 35361–35365 (2021)

    Article  Google Scholar 

  16. O. Samuel, M.H.D. Othman, R. Kamaludin, O. Sinsamphanh, H. Abdullah, M.H. Puteh, T.A. Kurniawan, WO3–based photocatalysts: a review on synthesis, performance enhancement and photocatalytic memory for environmental applications. Ceram. Int. 48, 5845–5875 (2022)

    Article  CAS  Google Scholar 

  17. V.T. Quyen, J. Kim, P.-M. Park, P.T. Huong, N.M. Viet, P.Q. Thang, Enhanced the visible light photocatalytic decomposition of antibiotic pollutant in wastewater by using Cu doped WO3. J. Environ. Chem. Eng. 9, 104737 (2021)

    Article  CAS  Google Scholar 

  18. L. Mohan, A.V. Avani, P. Kathirvel, R. Marnadu, R. Packiaraj, J.R. Joshua, N. Nallamuthu, M. Shkir, S. Saravanakumar, Investigation on structural, morphological and electrochemical properties of Mn doped WO3 nanoparticles synthesized by co-precipitation method for supercapacitor applications. J. Alloy. Compd. 882, 160670 (2021)

    Article  CAS  Google Scholar 

  19. S. Buddee, C. Suwanchawalit, S. Wongnawa, Nickel doped nanorod titanium dioxide photocatalyst with enhanced visible light photocatalytic performance. Dig. J. Nanomater. Biostruct. 12, 829–839 (2017)

    Google Scholar 

  20. M. Goudarzi, N. Mir, O. Amiri, M. Salavati-Niasari, Photocatalytic degradation of antibiotic using Ni-doped thallium(I) orthotungstate nanorods: hydrothermal synthesis and characterization. J. Alloy. Compd. 874, 159856 (2021)

    Article  CAS  Google Scholar 

  21. K. Santhi, K. Subbian, Degradation of Alizarin red S dye using Ni doped WO3 photocatalyst. J. Mater. Sci.: Mater. Electron. 27(5), 5033–5038 (2016)

    CAS  Google Scholar 

  22. R.D. Kumar, Y. Andou, S. Karuppuchamy, Synthesis and characterization of nanostructured Ni-WO3 and NiWO4 for supercapacitor applications. J. Alloy. Compd. 654, 349–356 (2016)

    Article  CAS  Google Scholar 

  23. F. Mehmood, M. Javed Iqbal, A.M. Ismail, Ni doped WO3 nanoplates: An excellent photocatalyst and novel nanomaterial for enhanced anticancer activities. Alloys and Compd. 746, 729–738 (2018)

    Article  CAS  Google Scholar 

  24. S.S. Xueting Chang, Xu. Xiao, Z. Li, Synthesis of transition metal doped tungsten oxide nanostructures and their optical properties. Mater. Lett. 65, 1710–1712 (2011)

    Article  Google Scholar 

  25. H. Zhang, Y. Chen, Y. Pan, L. Bao, Y.-J. Yuan, Hydrogen pressure-assisted rapid recombination of oxygen vacancies in WO3 nanosheets for enhanced N2 photofixation. J. Solid State Chem. 303, 122520 (2021)

    Article  CAS  Google Scholar 

  26. J.I. Faisal Mehmood, M. Ismail, A. Mehmood, Ni doped WO3 nanoplates: an excellent photocatalyst and novel nanomaterial for enhanced anticancer activities. J. Alloys Compd. 746, 729–738 (2018)

    Article  Google Scholar 

  27. C.Y. Zhang, K. Wang, R. Si, M. Godefroid, P. Jönsson, J. Xiao, Gu. Ming Feng, C.Y. Chen, Benchmarking calculations with spectroscopic accuracy of level energies and wavelengths in W LVII–W LXII tungsten ions. J. Quant. Spectrosc. Radiat. Transfer 269, 107650 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is funded by the Vietnam National University, Hanoi (VNU) under project number QG.22.12.

Funding

Đại học Quốc gia Hà Nội, 22.12, Thanh-Dong Pham.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nguyen Thi Hanh or Thanh-Dong Pham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 208 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huong, N.T., Phuong, D.M., Duong, T.A. et al. Investigation of doping effects of Ni to enhance photocatalytic activity of WO3 for advanced degradation of tetracycline in aqueous environment. MRS Communications 13, 1119–1124 (2023). https://doi.org/10.1557/s43579-023-00398-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00398-3

Keywords

Navigation