Skip to main content
Log in

Photocatalytic effect of manganese doped WO3 and the effect of dopants on degradation of methylene blue

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aim of this article is to prepare Tungsten oxide (WO3) nanoparticle along with manganese (3 and 10 wt%) by Microwave irradiation method. The physical properties of the synthesized Mn doped WO3 materials were characterized by X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), transmission electron microscope (TEM), UV-diffuse reflectance spectroscopy and photoluminescence studies. Powder XRD results reveal that the Mn doped WO3 crystallizes in monoclinic structure. FTIR spectroscopy analysis reveals the presence of tungsten and oxygen in the synthesised material. TEM micrograph illustrate that both pristine and Mn doped WO3 nanopaticles are having spherical shaped morphology with average particle size from 35–50 nm. A significant red shift in the absorption edge and decrease the band gap energy for WO3 nanoparticles were confirmed with UV-DRS spectra analysis. The defects and oxygen deficiencies were analysed by photoluminescence spectroscopy. The photocatalytic activites of the pure and Mn doped WO3 samples were evaluated by the degradation of methylene blue in a aqueous solution under visible light irradiation. The photocatalytic activity for Mn doped WO3 was much higher than that of the pure WO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  2. D.Y. Goswami, J. Sol. Energy T ASME 119, 101 (1997)

    Article  Google Scholar 

  3. F.Y. Sun, M. Wu, W.G. Li, Chin. J. Catal. 19, 229 (1998)

    Google Scholar 

  4. L. Spanhel, H. Weller, A. Henglein, J. Am. Chem. Soc. 109, 6632 (1987)

    Article  Google Scholar 

  5. K.R. Gopias, M. Bohorquez, P.V. Kamat, J. Phys. Chem. US 94, 6435 (1990)

    Article  Google Scholar 

  6. B. Idriss, P.V. Kamat, J. Phys. Chem. US 99, 9182 (1995)

    Article  Google Scholar 

  7. X.Z. Fu, A.C. Louis, Q. Yang, M.A. Anderson, Environ. Sci. Technol. 30, 647 (1996)

    Article  Google Scholar 

  8. S.P. Fen, G.W. Meng, L.D. Zhang, Chin. Sci. Bull. 43, 1613 (1998)

    Google Scholar 

  9. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, J. Mater. Sci. Mater. Electron. 25, 730–735 (2014)

    Article  Google Scholar 

  10. X. Bai, H. Ji, P. Gao, Y. Zhang, X. Sun, Sens. Actuators B 193, 100–106 (2014)

    Article  Google Scholar 

  11. S.B. Upadhyay, R.K. Mishra, P.P. Sahay, Sens. Actuators B 193, 19–27 (2014)

    Article  Google Scholar 

  12. Z. Hua, M. Yuasa, T. Kida, N. Yamazoe, K. Shimanoe, Thin Solid Films 548, 677–682 (2013)

    Article  Google Scholar 

  13. W. Cong, C.A.O. Lin, J. Rare Earths 29, 727–731 (2011)

    Article  Google Scholar 

  14. D. Madhan, M. Parthibavarman, P. Rajkumar, M. Sangeetha, J Mater Sci: Mater Electron (2015). doi:10.1007/s10854-015-3296-5

    Google Scholar 

  15. A. Hameed, M.A. Gondal, Z.H. Yamani, Catal. Commun. 5, 715–719 (2004)

    Article  Google Scholar 

  16. A. Wolcott, T.R. Kuykendall, W. Chem, S. Chen, J.Z. Zhang, J. Phys. Chem. 12110, 25288–25396 (2006)

    Article  Google Scholar 

  17. T. Jesionowski, Powder Technol. 127, 56–65 (2002)

    Article  Google Scholar 

  18. D. Susanti, N.S. Haryo, H. Nisfu, E.P. Nugroho, H. Purwaningsih, G.E. Kusuma, S.J. Shih, Front. Chem. Sci. Eng. 6(4), 371–380 (2012)

    Article  Google Scholar 

  19. Krasovec UO, Vuk AS, Orel B, Electrochim. Acta, 46, 1921–1929 (2001)

    Article  Google Scholar 

  20. I. Hargittai, M. Hargittai, V.P. Spiridonov, E.V. Erokhin, J. Mol. Struct. 8, 31 (1971)

    Article  Google Scholar 

  21. W.H. Lai, J. shieh, L.G. Teoh, M.H. Hon, Nanotechnology 17, 110–115 (2006)

    Article  Google Scholar 

  22. A.E. Morales, E.S. Mora, U. Pal, Rev. Mex. Fis. 53, 18–22 (2006)

    Google Scholar 

  23. T. Tokunaga, T. Kawamoto, K. Tanaka, Y. Hayashi, K. Sasaki, K. Kuroda, AMTC Lett. 2, 80–81 (2010)

    Google Scholar 

  24. W.H. Lai, J. shieh, L.G. Teoh, M.H. Hon, Nanotechnology 17, 110–115 (2006)

    Article  Google Scholar 

  25. S. Vadivel, G. Rajarajan, J. Mater. Sci. Mater. Electron. 26, 3155–3162 (2015)

    Article  Google Scholar 

  26. T. He, J. Yao, Prog. Mater Sci. 51, 810–879 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The author extends his gratefulness to Mr. R. Sakthiganapathy, Mr. S. Krishnaraj, Dr. T. Shanthi, Mr. M. Nagarajan and Mrs. P. Rajini to provide the moral support. Author also thanks Mr. M. Parthibavarman and Mrs. P. Kanchana for their supports rendered during the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Harshulkhan Sayed Abhudhahir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed Abhudhahir, M., Kandasamy, J. Photocatalytic effect of manganese doped WO3 and the effect of dopants on degradation of methylene blue. J Mater Sci: Mater Electron 26, 8307–8314 (2015). https://doi.org/10.1007/s10854-015-3496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3496-z

Keywords

Navigation