Skip to main content
Log in

CoFe2O4 magnetic nanoparticles: Synthesis by thermal decomposition of 8-hydroxyquinolinates, characterization, and application in catalysis

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Cobalt ferrite magnetic nanoparticles are used as magnetic catalysts in several transformation. The magnetic nature of the NPs enables their easy recovery and reusability. In this study, a new, simple and effective route for the preparation of CoFe2O4 MNPs was presented. The method involved the thermal decomposition of Co and Fe precipitates synthesized simultaneously with 8-hydroxyquinoline. The material was characterized by several spectroscopic methods, such as XRD, Raman, Mössbauer and electron microscopy. Furthermore, the CoFe2O4 MNPs prepared was applicated as catalyst for the perimidine synthesis and recycled magnetically.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data confirming the study carried out is available upon brief request to the authors.

References

  1. C. Shasha, K.M. Krishnan, Adv. Mater. (2021). https://doi.org/10.1002/adma.201904131

    Article  Google Scholar 

  2. P. Tartaj, M.P. Morales, T. González-Carreño, S. Veintemillas-Verdaguer, C.J. Serna, J. Magn. Magn. Mater. (2005). https://doi.org/10.1016/j.jmmm.2004.11.155

    Article  Google Scholar 

  3. H. Shao, C. Min, D. Issadore, M. Liong, T.J. Yoon, R. Weissleder, H. Lee, Theranostics (2012). https://doi.org/10.7150/thno.3465

    Article  Google Scholar 

  4. J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, J. Hubalek, Pharmacol. Res. (2010). https://doi.org/10.1016/j.phrs.2010.01.014

    Article  Google Scholar 

  5. S.C.N. Tang, I.M.C. Lo, Water Res. (2013). https://doi.org/10.1016/j.watres.2013.02.039

    Article  Google Scholar 

  6. S. Shukla, R. Khan, A. Daverey, Environ. Technol. Innov. (2021). https://doi.org/10.1016/j.eti.2021.101924

    Article  Google Scholar 

  7. W. Qiu, D. Yang, J. Xu, B. Hong, H. Jin, D. Jin, X. Peng, J. Li, H. Ge, X. Wang, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.03.304

    Article  Google Scholar 

  8. E. Swatsitang, S. Phokha, S. Hunpratub, B. Usher, A. Bootchanont, S. Maensiri, P. Chindaprasirt, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2015.12.230

    Article  Google Scholar 

  9. N. Hosni, K. Zehani, T. Bartoli, L. Bessais, H. Maghraoui-Meherzi, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.09.252

    Article  Google Scholar 

  10. K. Sangsuriyonk, N. Paradee, K. Rotjanasuworapong, A. Sirivat, Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-08709-9

    Article  Google Scholar 

  11. M. Kazemi, M. Ghobadi, A. Mirzaie, Nanotechnol. Rev. (2018). https://doi.org/10.1515/ntrev-2017-0138

    Article  Google Scholar 

  12. J.K. Rajput, G. Kaur, Chin. J. Catal (2013). https://doi.org/10.1016/S1872-2067(12)60646-9

    Article  Google Scholar 

  13. B. Paul, D.D. Purkayastha, S.S. Dhar, Mater. Chem. Phys. (2016). https://doi.org/10.1016/j.matchemphys.2016.06.039

    Article  Google Scholar 

  14. M. Abd El Aleem Ali Ali El-Remaily, H.A. Hamad, J. Mol. Catal. A Chem. (2015). https://doi.org/10.1016/j.molcata.2015.04.023

    Article  Google Scholar 

  15. F.M. Moghaddam, G. Tavakoli, A. Aliabadi, RSC Adv. (2015). https://doi.org/10.1039/C5RA08146G

    Article  Google Scholar 

  16. J. Wang, T. Deng, Y. Lin, C. Yang, W. Zhan, J. Alloys Compd. (2008). https://doi.org/10.1016/j.jallcom.2007.02.099

    Article  Google Scholar 

  17. G.A. El-Shobaky, A.M. Turky, N.Y. Mostafa, S.K. Mohamed, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2009.12.115

    Article  Google Scholar 

  18. D.C. Culita, L. Patron, V.S. Teodorescu, I. Balint, J. Alloys Compd. (2007). https://doi.org/10.1016/j.jallcom.2006.05.104

    Article  Google Scholar 

  19. M. Sajjia, M. Oubaha, T. Prescott, A.G. Olabi, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2010.07.015

    Article  Google Scholar 

  20. F.L. Zan, Y.Q. Ma, Q. Ma, Y.F. Xu, Z.X. Dai, G.H. Zheng, J. Alloys Compd. (2013). https://doi.org/10.1016/j.jallcom.2013.07.062

    Article  Google Scholar 

  21. M.S. Khandekar, R.C. Kambale, J.Y. Patil, Y.D. Kolekar, S.S. Suryavanshi, J. Alloys Compd. (2011). https://doi.org/10.1016/j.jallcom.2010.10.073

    Article  Google Scholar 

  22. S. Briceño, W. Brämer-Escamilla, P. Silva, G.E. Delgado, E. Plaza, J. Palacios, E. Cañizales, J. Magn. Magn. Mater. (2012). https://doi.org/10.1016/j.jmmm.2012.04.051

    Article  Google Scholar 

  23. K. Dubey, S. Dubey, V. Sahu, R.A. Parry, A. Modi, N.K. Gaur, Appl. Phys. A: Mater. Sci. Process (2022). https://doi.org/10.1007/s00339-022-05681-z

    Article  Google Scholar 

  24. H.E. Zorel, M.S. Crespi, C.A. Ribeiro, J. Therm. Anal. Calorm. (2004). https://doi.org/10.1023/B:JTAN.0000027144.59771.53

    Article  Google Scholar 

  25. W. Jiang, M. Zhou, Z. Liu, D. Sun, Z.V. Vardeny, F. Liu, J. Phys. Condens. Matter (2016). https://doi.org/10.1088/0953-8984/28/17/176004

    Article  Google Scholar 

  26. X.D. Yang, X.B. Chen, C.J. Mao, J.M. Song, H.L. Niu, S.Y. Zhang, J. Alloys Compd. 590, 465 (2014). https://doi.org/10.1016/j.jallcom.2013.12.089

    Article  CAS  Google Scholar 

  27. A.V. Ravindra, B.C. Behera, P. Padhan, O.I. Lebedev, W. Prellier, J. Appl. Phys. (2014). https://doi.org/10.1063/1.4890512

    Article  Google Scholar 

  28. D.L.A. de Faria, S.V. Silva, M.T. de Oliveira, J. Raman Spectrosc. (1997). https://doi.org/10.1002/(SICI)1097-4555(199711)28:11%3C873::AID-JRS177%3E3.0.CO;2-B

    Article  Google Scholar 

  29. S. Singh, S. Munjal, N. Khare, J. Magn. Magn. Mater (2015). https://doi.org/10.1016/j.jmmm.2015.03.057

    Article  Google Scholar 

  30. G. Chandra, R.C. Srivastava, V.R. Reddy, H.M. Agrawal, J. Magn. Magn. Mater (2017). https://doi.org/10.1016/j.jmmm.2016.10.082

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Analysis Center (CA)—UTFPR, the Physics Department—(DFI)—UEM and the Electronic Microscopy Center (CME)—UFPR, Universidade Federal Technological University of Paraná (UTFPR), State University of the Midwest (UNICENTRO). We would like to thank Editage (www.editage.com) for English language editing.

Funding

M.S. Sikora thanks UTFPR for supporting the research [PAPCDT 07/2021].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giancarlo V. Botteselle or Henrique Emilio Zorel Junior.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2161 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Retizlaf, A., de Souza Sikora, M., Ivashita, F.F. et al. CoFe2O4 magnetic nanoparticles: Synthesis by thermal decomposition of 8-hydroxyquinolinates, characterization, and application in catalysis. MRS Communications 13, 567–573 (2023). https://doi.org/10.1557/s43579-023-00384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00384-9

Keywords

Navigation