Skip to main content

Advertisement

Log in

Progress in cold/cryo-pressurized composite tanks for hydrogen

  • Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This perspective shows as physical is superior to material-based storage of hydrogen, thanks to the high technology readiness level, the high ratio of the mass of the stored hydrogen divided by the mass of the complete storage system, which the proposed high-pressure, insulated, composite tanks in graphene may deliver. Physical-based technologies may be further improved by further optimizing the cold/cryo-compressed designs and better engineering the graphene-based composites. Bioinspiration may be a way to further enhance the use graphene in composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Toyota Europe, 2014. Outline of the Mirai. www.toyota-europe.com/download/cms/euen/Toyota%20Mirai%20FCV_Posters_LR_tcm-11-564265.pdf

  2. Argonne National Laboratory, 2016. D3 2016 Toyota Mirai. www.anl.gov/es/energy-systems-d3-2016-toyota-mirai

  3. Lohse-Busch, H., Stutenberg, K., Duoba, M. and Iliev, S., 2018. Technology assessment of a fuel cell vehicle: 2017 Toyota Mirai. Argonne National Laboratory (ANL) report No. ANL/ESD-18/12. Argonne, IL (United States). publications.anl.gov/anlpubs/2018/06/144774.pdf

  4. Nehls, G., 2021. Toyota awards Toyoda Gosei for composite hydrogen tank development. www.compositesworld.com/news/toyota-awards-toyoda-gosei-for-composite-hydrogen-tank-development

  5. T. Wallner, H. Lohse-Busch, S. Gurski, M. Duoba, W. Thiel, D. Martin, T. Korn, Fuel economy and emissions evaluation of BMW Hydrogen 7 Mono-Fuel demonstration vehicles. Int. J. Hydrog. Energy 33(24), 7607–7618 (2008)

    Article  CAS  Google Scholar 

  6. W. Enke, M. Gruber, L. Hecht, B. Staar, Der bivalente V12-Motor des BMW Hydrogen 7. MTZ-Motortechnische Zeitschrift 68(6), 446–453 (2007)

    Article  Google Scholar 

  7. IO Aircraft Technologies, 2022. Graphene. www.ioaircraft.com/technology-graphene.php

  8. IO Aircraft Technologies, 2022. Conforming Tanks. ioaircraft.com/innovation/conformingtanks.php

  9. Littlely, B., 2006. BMW hydrogen 7 launched. www.carsguide.com.au/car-news/bmw-hydrogen-7-launched-14436

  10. www.bmwblog.com/2016/08/17/bmw-stop-making-hydrogen-7-model/

  11. A. Boretti, Hydrogen internal combustion engines to 2030. Int. J. Hydrog. Energy 45(43), 23692–23703 (2020)

    Article  CAS  Google Scholar 

  12. twi-global.com, n.d. What Does TRL Mean?. www.twi-global.com/technical-knowledge/faqs/technology-readiness-levels

  13. www.energy.gov/eere/fuelcells/hydrogen-storage

  14. grupa-wolff.com, 2022. Graphene hydrogen fuel tanks. www.grupa-wolff.com/graphene-hydrogen-fuel-tanks/

  15. graphmatech.com, 2022. Steelhead Composites and Graphmatech are developing improved hydrogen storage tanks with graphene. graphmatech.com/steelhead-composites-and-graphmatech-are-developing-improved-hydrogen-storage-tanks-with-graphene/

  16. graphene-info.com, 2021. Haydale awarded APC funding to develop graphene-enhanced hydrogen fuel cell tanks. www.graphene-info.com/haydale-awarded-apc-funding-develop-graphene-enhanced-hydrogen-fuel-cell-tanks

  17. apppliedgraphenematerials.com, 2021. Graphene Dispersions for Composites. www.appliedgraphenematerials.com/wp-content/uploads/2021/06/AGM-Composites-Presentation.pdf

  18. G. Liu, F. Yang, W. Liu, Y. Bai, C. Han, W. Jiao, P. Wang, R. Wang, Ultra-high gas barrier composites with aligned graphene flakes and polyethylene molecules for high-pressure gas storage tanks. J. Energy Storage 40, 102692 (2021)

    Article  Google Scholar 

  19. G. Liu, F. Yang, Y. Bai, C. Han, W. Liu, X. Guo, P. Wang, R. Wang, Enhancement of bonding strength between polyethylene/graphene flakes composites and stainless steel and its application in type IV storage tanks. J. Energy Storage 42, 103142 (2021)

    Article  Google Scholar 

  20. X. Wang, M. Tian, X. Chen, P. Xie, J. Yang, J. Chen, W. Yang, Advances on materials design and manufacture technology of plastic liner of type IV hydrogen storage vessel. Int. J. Hydrog. Energy 47(13), 8382–8408 (2022)

    Article  CAS  Google Scholar 

  21. Mason, H., 2020. Graphene 101: Forms, properties and applications. www.compositesworld.com/articles/graphene-101-forms-properties-and-applications

  22. Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Wu, Y.P. Feng, Z.X. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7(9), 2758–2763 (2007)

    Article  CAS  Google Scholar 

  23. T.H. Courtney, Mechanical behavior of materials (Waveland Press, Long Grove, 2005)

    Google Scholar 

  24. X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012)

    Article  CAS  Google Scholar 

  25. I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, P.M. Ajayan, Composites with carbon nanotubes and graphene: an outlook. Science 362(6414), 547–553 (2018)

    Article  CAS  Google Scholar 

  26. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    Article  CAS  Google Scholar 

  27. H. Sepetcioglu, Experimental study on the effect of graphene nanoplatelets on the low-velocity impact response of prestressed filament wound basalt-based composite pressure vessels. Polym. Compos. 42(10), 5527–5540 (2021)

    Article  CAS  Google Scholar 

  28. H. Sepetcioglu, N. Tarakcioglu, R. Rafiee, Experimental investigation of graphene nanoplatelets effect on the fatigue behavior of basalt/epoxy composite pressure vessels. Thin-Walled Struct. 171, 108672 (2022)

    Article  Google Scholar 

  29. H. Sepetcioglu, N. Tarakcioglu, Fatigue behavior of graphene nanoplatelets reinforced and unreinforced basalt/epoxy composite pressure vessels subjected to low-velocity impact under internal pressure. J. Compos. Mater. 55(29), 4361–4373 (2021)

    Article  CAS  Google Scholar 

  30. H. Sepetcioglu, N. Tarakcioglu, Effect of graphene nanoplatelets on progressive failure behavior under internal pressure of composite cylindrical pressure vessels. J. Mater. Eng. Perform. 31(3), 2225–2239 (2022)

    Article  CAS  Google Scholar 

  31. J.C. Weaver, G.W. Milliron, A. Miserez, K. Evans-Lutterodt, S. Herrera, I. Gallana, W.J. Mershon, B. Swanson, P. Zavattieri, E. DiMasi, D. Kisailus, The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science 336(6086), 1275–1280 (2012)

    Article  CAS  Google Scholar 

  32. Nightingale, S., 2016, Mantis shrimp inspires next generation of ultra-strong materials. phys.org/news/2016–05-mantis-shrimp-ultra-strong-materials.html

  33. N.A. Yaraghi, N. Guarín-Zapata, L.K. Grunenfelder, E. Hintsala, S. Bhowmick, J.M. Hiller, M. Betts, E.L. Principe, J.Y. Jung, L. Sheppard, R. Wuhrer, A sinusoidally architected helicoidal biocomposite. Adv. Mater. 28(32), 6835–6844 (2016)

    Article  CAS  Google Scholar 

  34. Ober., H., 2018, Why mantis shrimp don’t crack under pressure. news.ucr.edu/articles/2018/06/25/why-mantis-shrimp-dont-crack-under-pressure

  35. Ober, H., 2019, New bio-inspired technology is poised to disrupt the composites industry. news.ucr.edu/articles/2019/08/07/new-bio-inspired-technology-poised-disrupt-composites-industry

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The author declares no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boretti, A. Progress in cold/cryo-pressurized composite tanks for hydrogen. MRS Communications 13, 400–405 (2023). https://doi.org/10.1557/s43579-023-00379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00379-6

Keywords

Navigation