Skip to main content
Log in

Impact of electron concentration on the transformation temperature and important physical properties of NiMnSnFe ferromagnetic shape memory alloys

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This study aimed to explore the influence of electron concentration on the NiMnSn alloy, which is a crucial ferromagnetic shape memory alloy (FSMA). The alloy was doped with various amounts of iron element to assess its effect. According to DSC measurement, iron doping has resulted in a general decrease in the transformation temperature value of NiMnSn alloy, as well as a decrease in the transformation enthalpy value. The orthorhombic martensite phase of NiMnSn alloy was replaced by L21 austenite crystal structure in X-ray measurements. Martensite, austenite, and precipitate phases were observed in SEM images. Iron doping significantly increased the magnetic saturation value of NiMnSn alloy, according to magnetic measurements, and thermomagnetic measurements revealed similar results.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data associated with a paper are available and under what conditions the data can be accessed.

References

  1. Y. Bellouard, Shape memory alloys for microsystems: a review from a material research perspective. Mater. Sci. Eng., A 481, 582 (2008)

    Article  Google Scholar 

  2. B. Hernando, J.S. Llamazares, J. Santos, M. Sánchez, L. Escoda, J. Suñol, R. Varga, C. García, J. González, Grain oriented NiMnSn and NiMnIn Heusler alloys ribbons produced by melt spinning: martensitic transformation and magnetic properties. J. Magn. Magn. Mater. 321, 763 (2009)

    Article  CAS  Google Scholar 

  3. S. Datta, M. Kar, NiMnSn half Heusler alloy: critical phenomena at the ferromagnetic to paramagnetic phase transition. Mater. Today: Proceedings 57, 431 (2022)

    CAS  Google Scholar 

  4. R.Y. Umetsu, X. Xu, R. Kainuma, NiMn-based metamagnetic shape memory alloys. Scripta Mater. 116, 1 (2016)

    Article  CAS  Google Scholar 

  5. E. Faran, D. Shilo, Ferromagnetic shape memory alloys—challenges, applications, and experimental characterization. Exp. Tech. 39, 1 (2015)

    Google Scholar 

  6. V. Chernenko, S. Besseghini, Ferromagnetic shape memory alloys: scientific and applied aspects. Sens. Actuators, A 142, 542 (2008)

    Article  CAS  Google Scholar 

  7. X. Zhang, M. Qian, X. Zhang, M. Qian, Application of Magnetic Shape Memory Alloys, 1st edn. (Springer, 2022) pp. 255–268

  8. J. Marcos, L. Mañosa, A. Planes, F. Casanova, X. Batlle, A. Labarta, Multiscale origin of the magnetocaloric effect in Ni–Mn–Ga shape-memory alloys. Phys. Rev. B 68, 094401 (2003)

    Article  Google Scholar 

  9. S. Liu, H. Xuan, T. Cao, L. Wang, Z. Xie, X. Liang, H. Li, L. Feng, F. Chen, P. Han, Magnetocaloric and elastocaloric effects in all-d-Metal Ni37Co9Fe4Mn35Ti15 magnetic shape memory alloy. Physica status solidi (a) 216, 1900563 (2019)

    Article  CAS  Google Scholar 

  10. M.T. Khan, Y. Wang, C. Wang, X. Liao, S. Yang, X. Song, X. Ren, Combination of conventional elastocaloric and magnetocaloric effects in a Co37Ni35Al28 ferromagnetic shape memory alloy. Scripta Mater. 146, 182 (2018)

    Article  CAS  Google Scholar 

  11. Y. Aydogdu, A. Turabi, A. Aydogdu, M. Kok, Z. Yakinci, H. Karaca, The effects of boron addition on the magnetic and mechanical properties of NiMnSn shape memory alloys. J. Therm. Anal. Calorim. 126, 399 (2016)

    Article  CAS  Google Scholar 

  12. Q. Tao, Z. Han, J. Wang, B. Qian, P. Zhang, X. Jiang, D. Wang, Y. Du, Phase stability and magnetic-field-induced martensitic transformation in Mn-rich NiMnSn alloys. AIP Adv. 2, 042181 (2012)

    Article  CAS  Google Scholar 

  13. M.R. de Brito, F. de Souza Silva, M.A. Correa, F. Bohn, R.B. da Silva, T.A. dos Passos, R.A. Torquato, R.M. Gomes, D.F. de Oliveira, Disclosing the role of solidification dynamics on the structural features, magnetic properties and dynamic magnetic behavior of a NiMnSn Heusler alloy. MRS Communications 12, 62 (2022)

    Article  Google Scholar 

  14. N.U. Hassan, M. Jelani, I.A. Shah, K.U. Rehman, A.Q. Khan, S. Rehman, M. Jamil, D.-K. Kim, M.F. Khan, Tunable martensitic transformation and magnetic properties of Sm-doped NiMnSn ferromagnetic shape memory alloys. Crystals 11, 1115 (2021)

    Article  CAS  Google Scholar 

  15. F. Dagdelen, C. Ozay, E. Ercan, G. Emir, I. Qader, Change of electrical resistivity during phase transitions in NiMnSn-based shape memory alloy. J. Therm. Anal. Calorim. 147, 5815 (2022)

    Article  CAS  Google Scholar 

  16. Z. Wu, Z. Liu, H. Yang, Y. Liu, G. Wu, R.C. Woodward, Metallurgical origin of the effect of Fe doping on the martensitic and magnetic transformation behaviours of Ni50Mn40-xSn10Fex magnetic shape memory alloys. Intermetallics 19, 445 (2011)

    Article  Google Scholar 

  17. S. Guo, Y. Zhang, B. Quan, J. Li, Y. Qi, X. Wang, The effect of doped elements on the martensitic transformation in Ni–Mn–Ga magnetic shape memory alloy. Smart Mater. Struct. 14, S236 (2005)

    Article  CAS  Google Scholar 

  18. C. Tatar, R. Acar, I.N. Qader, Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method. European Phys. J. Plus 135, 1 (2020)

    Google Scholar 

  19. I.N. Qader, M. Kok, Z.D. Cirak, The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys. J. Therm. Anal. Calorim. 145, 279 (2021)

    Article  CAS  Google Scholar 

  20. M. Kök, Z. Yakinci, A. Aydogdu, Y. Aydogdu, Thermal and magnetic properties of Ni51Mn28. 5Ga19. 5B magnetic-shape-memory alloy. J. Therm. Anal. Calorim. 115, 555 (2014)

    Article  Google Scholar 

  21. Y. Aydogdu, A.S. Turabi, M. Kok, A. Aydogdu, H. Tobe, H.E. Karaca, Effects of the substitution of gallium with boron on the physical and mechanical properties of Ni–Mn–Ga shape memory alloys. Appl. Phys. A 117, 2073 (2014)

    Article  CAS  Google Scholar 

  22. L. Hofer, E.M. Cohn, Saturation magnetizations of iron carbides1. J. Am. Chem. Soc. 81, 1576 (1959)

    Article  CAS  Google Scholar 

  23. M. Kök, Y. Aydoğdu, Electron concentration dependence of phase transition and magnetic properties in NiMnGa alloys. J. Supercond. Novel Magn. 26, 1691 (2013)

    Article  Google Scholar 

  24. R. Kainuma, K. Ito, W. Ito, R. Umetsu, T. Kanomata, K. Ishida, NiMn-based metamagnetic shape memory alloys. Mater. Sci. Forum 635, 23 (2009)

    Article  Google Scholar 

  25. T. Bachagha, W. Ren, J. Sunol, C. Jing, Microstructure characterization, structure and magnetic properties of Ni–Mn–Sn shape memory alloys. J. Therm. Anal. Calorim. 147, 2147 (2022)

    Article  CAS  Google Scholar 

  26. S. Dong, J. Chen, Z. Han, Y. Fang, L. Zhang, C. Zhang, B. Qian, X. Jiang, Intermartensitic transformation and enhanced exchange bias in Pd (Pt)-doped Ni–Mn–Sn alloys. Sci. Rep. 6, 1 (2016)

    Google Scholar 

  27. S. Samanta, S. Ghosh, S. Chatterjee, K. Mandal, Large magnetocaloric effect and magnetoresistance in Fe–Co doped Ni50-x (FeCo) xMn37Ti13 all-d-metal Heusler alloys. J. Alloy. Compd. 910, 164929 (2022)

    Article  CAS  Google Scholar 

  28. P. Cheng, G. Zhang, Z. Li, B. Yang, Z. Zhang, D. Wang, Y. Du, Combining magnetocaloric and elastocaloric effects to achieve a broad refrigeration temperature region in Ni43Mn41Co5Sn11 alloy. J. Magn. Magn. Mater. 550, 169082 (2022)

    Article  CAS  Google Scholar 

  29. Y. Aydogdu, A. Turabi, M. Kok, A. Aydogdu, Z. Yakinci, M. Aksan, M. Yakinci, H. Karaca, The effect of Sn content on mechanical, magnetization and shape memory behavior in NiMnSn alloys. J. Alloy. Compd. 683, 339 (2016)

    Article  CAS  Google Scholar 

  30. Y. Zhu, H. Xuan, J. Su, F. Chen, K. Zhang, P. Han, J. Qiao, Large elastocaloric effect in as-cast Ni–Mn–Sn–Fe ferromagnetic shape memory alloys. Phys. Lett. A 451, 128374 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by Kafkas University Scientific Research Projects Coordination Unit (Project Numbers: 2022-FM-24)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mediha Kök.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest in the printing of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkoç, T., Kanca, M.S., Işık, E. et al. Impact of electron concentration on the transformation temperature and important physical properties of NiMnSnFe ferromagnetic shape memory alloys. MRS Communications 13, 500–506 (2023). https://doi.org/10.1557/s43579-023-00363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00363-0

Keywords

Navigation