Skip to main content
Log in

Electrospun PVA nanofibers doped with titania nanoparticles in plasmon-coupled fluorescence studies: An eco-friendly and cost-effective transition from 2D nano thin films to 1D nanofibers

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We report the synthesis of electrospun PVA nanofibers doped with Titania nanoparticles (NPs) utilized in plasmon-coupled fluorescence studies to obtain augmented enhancements. Amongst the three NPs used for the study, the highest enhancements (~ 150-fold) was achieved utilizing TiCN-doped nanofibers. The high enhancements from nanofibers allowed us to compare it with 2D thin films. The nanofibers presented emission enhancements that are greater and highly polarized even at increased concentrations of PVA vis-à-vis thin films that show dual polarizations at higher concentrations of PVA. These results show that 1D nanofibers can be used as green & low-cost replacements to 2D nano thin films.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Abbreviations

PVA:

Poly(vinyl alcohol)

NPs:

Nanoparticles

SPCE:

Surface plasmon-coupled emission

TiC:

Titanium carbide

TiN:

Titanium nitride

TiCN:

Titanium carbonitride

Ext. Cavity:

Extended cavity

SAED:

Selected area electron diffraction

XRD:

X-ray Diffraction

SEM:

Scanning electron microscopy

AFM:

Atomic force microscopy

Rh6G:

Rhodamine 6G

FS:

Free space

SPR:

Surface plasmon resonance

References

  1. L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, E.L. Corral, Toughening in graphene ceramic composites. ACS Nano 15, 3182–3190 (2011)

    Article  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 80(306), 666–669 (2004)

    Article  Google Scholar 

  3. K. Chen, B. Li, Y. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular. Nano Today 6, 131–154 (2011)

    Article  CAS  Google Scholar 

  4. I. Gryczynski, J. Malicka, Z. Gryczynski, J.R. Lakowicz, Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal. Biochem. 324, 170–182 (2005)

    Article  Google Scholar 

  5. P.K. Badiya, V. Srinivasan, T.P. Jayakumar, S.S. Ramamurthy, Ag-CNT architectures for attomolar dopamine detection and 100- fold fluorescence enhancements with cellphone-based surface plasmon-coupled emission platform. ChemPhysChem 17, 2791–2794 (2016)

    Article  CAS  Google Scholar 

  6. C. Wang, Y. Li, G. Ding, X. Xie, M. Jiang, Preparation and characterization of graphene oxide/poly (vinyl alcohol) composite nanofibers via electrospinning. J. Appl. Polym. Sci. 21, 1–7 (2012)

    Google Scholar 

  7. B. Rai, R. Malmberg, V. Srinivasan, K.M. Ganesh, N.S.V. Kambhampati, A. Andar, G. Rao, C.B. Sanjeevi, K. Venkatesan, S.S. Ramamurthy, Surface plasmon-coupled dual emission platform for ultrafast oxygen monitoring after SARS-CoV-2 infection. ACS Sens. 6, 4360–4368 (2021)

    Article  CAS  Google Scholar 

  8. F. Müller, S. Jokisch, H. Bargel, T. Scheibel, Centrifugal electrospinning enables the production of meshes of ultrathin polymer fibers. ACS Appl. Polym. Mater. 2, 4360–4367 (2020)

    Article  Google Scholar 

  9. C.-L. Zhang, S.-H. Yu, Nanoparticles meet electrospinning: recent advances and future prospects. Chem. Soc. Rev. 43, 4423–4448 (2014)

    Article  CAS  Google Scholar 

  10. N. Radacsi, F.D. Campos, C.R.I. Chisholm, K.P. Giapis, Spontaneous formation of nanoparticles on electrospun nano fibres. Nat. Commun. 9, 3–10 (2018)

    Article  Google Scholar 

  11. G.-M. Kim, A. Wutzler, H.-J. Radusch, G.H. Michler, P. Simon, R.A. Sperling, W.J. Parak, One-dimensional arrangement of gold nanoparticles by electrospinning. Chem. Mater. 17, 4949–4957 (2005)

    Article  CAS  Google Scholar 

  12. L. Yao, T.W. Haas, A. Guiseppi-Ellie, G.L. Bowlin, D.G. Simpson, G.E. Wnek, Electrospinning and stabilization of fully hydrolyzed poly ( vinyl alcohol ) fibers. Polymer 15, 1860–1864 (2003)

    CAS  Google Scholar 

  13. D. Li, Y. Xia, Fabrication of titania nanofibers by electrospinning. Nano Lett. 3, 555–560 (2003)

    Article  CAS  Google Scholar 

  14. X. Wu, Y. Si, J. Yu, B. Ding, Titania-based electrospun nanofibrous materials: a new model for organic pollutants degradation. MRS Commun. 8, 765–781 (2018)

    Article  CAS  Google Scholar 

  15. J.F. Li, C.Y. Li, R.F. Aroca, Plasmon-enhanced fluorescence spectroscopy. Chem. Soc. Rev. 46, 3962–3979 (2017)

    Article  CAS  Google Scholar 

  16. J.R. Lakowicz, Radiative decay engineering 3 Surface plasmon-coupled directional emission. Anal. Biochem. 324, 153–169 (2004)

    Article  CAS  Google Scholar 

  17. S. Venkatesh, S. Ghajesh, S.S. Ramamurthy, 1-Minute spacer layer engineering for tunable enhancements in surface plasmon-coupled emission. Plasmonics 10, 489–494 (2015)

    Article  CAS  Google Scholar 

  18. S. Rathnakumar, S. Bhaskar, A. Rai, D.V.V. Saikumar, N.S.V. Kambhampati, V. Sivaramakrishnan, S.S. Ramamurthy, Plasmon-coupled silver nanoparticles for mobile phone-based attomolar sensing of mercury ions. ACS Appl. Nano Mater. 4, 8066–8080 (2021)

    Article  CAS  Google Scholar 

  19. S. Bhaskar, N.S.V. Kambhampati, K.M. Ganesh, S.S. Ramamurthy, Metal-free, graphene oxide-based tunable soliton and plasmon engineering for biosensing applications. ACS Appl. Mater. Interfaces 13, 17046–17061 (2021)

    Article  CAS  Google Scholar 

  20. S. Bhaskar, S.S. Ramamurthy, Synergistic coupling of titanium carbonitride nanocubes and graphene oxide for 800-fold fluorescence enhancements on smartphone based surface plasmon-coupled emission platform. Mater. Lett. 298, 130008 (2021)

    Article  CAS  Google Scholar 

  21. P.K. Baumgarten, Electrostatic spinning of acrylic microfibers. J. Colloid Interface Sci. 36, 71–79 (1971)

    Article  CAS  Google Scholar 

  22. C. Zhang, X. Yuan, L. Wu, Y. Han, J. Sheng, Study on morphology of electrospun poly(vinyl alcohol) mats. Eur. Polym. J. 41, 423–432 (2005)

    Article  CAS  Google Scholar 

  23. H. Fong, I. Chun, D.H. Reneker, Beaded nanofibers formed during electrospinning. Polym. J. 40, 4585–4592 (1999)

    Article  CAS  Google Scholar 

  24. B. Tarus, N. Fadel, A. Al-oufy, M. El-messiry, Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alexandria Eng. J. 55, 2975–2984 (2016)

    Article  Google Scholar 

  25. D.H. Peregrine, Free liquid jets and films: hydrodynamics and rheology by A. L. Y ARIN. J. Fluid Mech. 312, 408–409 (1996)

    Article  Google Scholar 

  26. V. Srinivasan, A.K. Manne, S.G. Patnaik, S.S. Ramamurthy, Cellphone monitoring of multi-qubit emission enhancements from Pd-carbon plasmonic nanocavities in tunable coupling regimes with attomolar sensitivity. ACS Appl. Mater. Interfaces 8, 23281–23288 (2016)

    Article  CAS  Google Scholar 

  27. S. Bhaskar, N.C.S.S. Kowshik, S.P. Chandran, S.S. Ramamurthy, Femtomolar detection of spermidine using au decorated SiO2 nanohybrid on plasmon-coupled extended cavity nanointerface: a smartphone-based fluorescence dequenching approach. Langmuir 36, 2865–2876 (2020)

    Article  CAS  Google Scholar 

  28. V. Srinivasan, S.S. Ramamurthy, Purcell factor: a tunable metric for plasmon-coupled fluorescence emission enhancements in cermet nanocavities. J. Phys. Chem. C 120, 2908–2913 (2016)

    Article  CAS  Google Scholar 

  29. Y.L. Yang, D. Zhang, W. Yan, Y. Zheng, Microstructure and wear properties of TiCN/Ti coatings on titanium alloy by laser cladding. Opt. Lasers Eng. 48, 119–124 (2010)

    Article  Google Scholar 

  30. M.F. Pantano, I. Kuljanishvili, Advances in mechanical characterization of 1D and 2D nanomaterials: progress and prospects. Nano Express 1, 24 (2020)

    Article  Google Scholar 

  31. I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, J.R. Lakowicz, Effects of sample thickness on the optical properties of surface plasmon-coupled emission. J. Phys. Chem. B 108, 12073–12083 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from Tata Educational and Development Trust [TEDT/MUM/HEA/SSSIHL/2017-2018/0069-RM-db], DST-Technology Development Program [IDP/MED/19/2016] and DST-Inspire Fellowship [IF180392], Govt. of India. The authors thank Dr. Bebeto Rai for the study inputs and proof reading. The authors especially acknowledge SSSIHL-CRIF for extending the usage of the required instrumentation facility. Guidance from Bhagawan Sri Sathya Sai Baba is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Venkatesh Srinivasan or Sai Sathish Ramamurthy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4628 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathnakumar, S., Bhaskar, S., Badiya, P.K. et al. Electrospun PVA nanofibers doped with titania nanoparticles in plasmon-coupled fluorescence studies: An eco-friendly and cost-effective transition from 2D nano thin films to 1D nanofibers. MRS Communications 13, 290–298 (2023). https://doi.org/10.1557/s43579-023-00342-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00342-5

Keywords

Navigation