Skip to main content
Log in

Humidity sensing performance of polyaniline-neodymium oxide composites

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Humidity sensing response of conducting polymer composite such as Polyaniline-Neodymium Oxide (PNO) composite with varying wt% of Nd2O3 in PANI [PANI-Nd2O3-10% (PNO-1), PANI-Nd2O3-30% (PNO-2) and PANI-Nd2O3-50% (PNO-3)] was studied. These samples were prepared by in situ chemical polymerization and were structurally and morphologically characterized by various analytical techniques. Humidity sensing performance of the PNO composites was evaluated in the range of 11–97% RH. Composite PNO-3 showed the highest sensing response of 99% with a response and recovery times of 28 and 29 s, respectively. Other sensing parameters like hysteresis, limit of detection, and sensing stability were also determined for the composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. B. Chethan, H.G. Raj Prakash, Y.T. Ravikiran, S.C. Vijaya Kumari, C.V.V. Ramana, S. Thomas, D. Kim, Enhancing humidity sensing performance of polyaniline/water soluble graphene oxide composite. Talanta 196, 337–344 (2019)

    Article  CAS  Google Scholar 

  2. D. Nunes, A. Pimentel, A. Gonçalves, S. Pereira, R. Branquinho, P. Barquinha, E. Fortunato, R. Martins, Metal oxide nanostructures for sensor applications. 2D Mater. 34, 043001 (2019). https://doi.org/10.1088/2053-1583/abe778

    Article  CAS  Google Scholar 

  3. F. Fang, J. Kennedy, J. Futter, T. Hopf, A. Markwitz, E. Manikandan, G. Henshaw, Size-controlled synthesis and gas sensing application of tungsten oxide nanostructures produced by arc discharge. Nanotechnology 22, 335702 (2011). https://doi.org/10.1088/0957-4484/22/33/335702

    Article  CAS  Google Scholar 

  4. C. Feng, S. Sun, H. Wang, C.U. Segre, J.R. Stetter, Humidity sensing properties of Nation and sol-gel derived SiO2/Nation composite thin films. Sens. Actuators B Chem. 40, 217–222 (1997). https://doi.org/10.1016/S0925-4005(97)80265-1

    Article  CAS  Google Scholar 

  5. R. Megha, Y.T. Ravikiran, S.C.V. Kumari, H.G.R. Prakash, M. Revanasiddappa, S. Manjunatha, S.G. Dastager, S. Thomas, Structural and electrical characterization studies for ternary composite of polypyrrole. J. Mater. Sci. Mater. Electron. 31, 18400–18411 (2020). https://doi.org/10.1007/s10854-020-04386-4

    Article  CAS  Google Scholar 

  6. M. Beygisangchin, S.A. Rashid, S. Shafie, A.R. Sadrolhosseini, H.N. Lim, Preparations, properties, and applications of polyaniline and polyaniline thin films—a review. Polymers (Basel). 13, 2003 (2021). https://doi.org/10.3390/polym13122003

    Article  CAS  Google Scholar 

  7. V. Babel, B.L. Hiran, A review on polyaniline composites: synthesis, characterization, and applications. Polym. Compos. 42, 3142–3157 (2021). https://doi.org/10.1002/pc.26048

    Article  CAS  Google Scholar 

  8. V. Manikandan, A. Mirzaei, I. Petrila, S. Kavita, R.S. Mane, J.C. Denardin, S. Lundgaard, S. Juodkazis, J. Chandrasekaran, S. Vigneselvan, Effect of neodymium stimulation on the dielectric, magnetic and humidity sensing properties of iron oxide nanoparticles. Mater. Chem. Phys. 254, 123572 (2020). https://doi.org/10.1016/j.matchemphys.2020.123572

    Article  CAS  Google Scholar 

  9. B. Chethan, H.G.R. Prakash, Y.T. Ravikiran, S.C.V. Kumari, S. Manjunatha, S. Thomas, Humidity sensing performance of hybrid nanorods of polyaniline-Yttrium oxide composite prepared by mechanical mixing method. Talanta 215, 120906 (2020). https://doi.org/10.1016/j.talanta.2020.120906

    Article  CAS  Google Scholar 

  10. S. Manjunatha, T. Machappa, Y.T. Ravikiran, M. Chethan, M. Revanasiddappa, Room temperature humidity sensing performance of polyaniline – holmium oxide composite. Appl. Phys. A. 125, 361 (2019). https://doi.org/10.1007/s00339-019-2638-1

    Article  CAS  Google Scholar 

  11. P. Aldebert, J.P. Traverse, Study by neutron diffraction of the high temperature structures of La2O3 and Nd2O3. Mater. Res. Bull. 14, 303–323 (1979). https://doi.org/10.1016/0025-5408(79)90095-3

    Article  CAS  Google Scholar 

  12. R. Najjar, S. Nematdoust, A resistive-type humidity sensor based on polypyrrole and ZnO nanoparticles: hybrid polymers vis-a-vis nanocomposites. RSC Adv. 6, 112129–112139 (2016). https://doi.org/10.1039/C6RA24002J

    Article  CAS  Google Scholar 

  13. J. Shah, M. Arora, L.P. Purohit, R.K. Kotnala, Significant increase in humidity sensing characteristics of praseodymium doped magnesium ferrite. Sens. Actuators A Phys. 167, 332–337 (2011). https://doi.org/10.1016/j.sna.2011.03.010

    Article  CAS  Google Scholar 

  14. S. Manjunatha, T. Machappa, Y.T. Ravikiran, B. Chethan, A. Sunilkumar, Polyaniline based stable humidity sensor operable at room temperature. Phys. B Condens. Matter. 561, 170–178 (2019). https://doi.org/10.1016/j.physb.2019.02.063

    Article  CAS  Google Scholar 

  15. S. Manjunatha, A. Sunilkumar, Y.T. Ravikiran, T. Machappa, Effect of holmium oxide on impedance and dielectric behavior of polyaniline–holmium oxide composites. J. Mater. Sci. Mater. Electron. 30, 10332–10341 (2019). https://doi.org/10.1007/s10854-019-01371-4

    Article  CAS  Google Scholar 

  16. Y.T. Ravikiran, M.T. Lagare, M. Sairam, N.N. Mallikarjuna, B. Sreedhar, S. Manohar, A.G. MacDiarmid, T.M. Aminabhavi, Synthesis, characterization and low frequency AC conduction of polyaniline/niobium pentoxide composites. Synth. Met. 156, 1139–1147 (2006). https://doi.org/10.1016/j.synthmet.2006.08.005

    Article  CAS  Google Scholar 

  17. S. Manjunatha, T. Machappa, A. Sunilkumar, Y.T. Ravikiran, Tungsten disulfide: an efficient material in enhancement of AC conductivity and dielectric properties of polyaniline. J. Mater. Sci. Mater. Electron. 29, 11581–11590 (2018). https://doi.org/10.1007/s10854-018-9255-1

    Article  CAS  Google Scholar 

  18. A. Sunilkumar, S. Manjunatha, B. Chethan, Y.T. Ravikiran, T. Machappa, Polypyrrole–tantalum disulfide composite: an efficient material for fabrication of room temperature operable humidity sensor. Sens. Actuators A Phys. (2019). https://doi.org/10.1016/j.sna.2019.111593

    Article  Google Scholar 

  19. M.R. Joya, J.E. Alfonso, L.C. Moreno, Photoluminescence and Raman studies of α- MoO 3 doped with erbium and neodymium. Curr. Sci. 116, 1690–1695 (2019). https://doi.org/10.18520/cs/v116/i10/1690-1695

    Article  CAS  Google Scholar 

  20. S.K. Shukla, S.K. Shukla, P.P. Govender, E.S. Agorku, A resistive type humidity sensor based on crystalline tin oxide nanoparticles encapsulated in polyaniline matrix. Microchim. Acta. 183, 573–580 (2016). https://doi.org/10.1007/s00604-015-1678-2

    Article  CAS  Google Scholar 

  21. S. Manjunatha, B. Chethan, Y.T. Ravikiran, T. Machappa, Room temperature humidity sensor based on polyaniline- tungsten disulfide composite. AIP Conf. Proc. 1953, 030096-1-030096–4 (2018). https://doi.org/10.1063/1.5032431

    Article  CAS  Google Scholar 

  22. P. Singh, C.S. Kushwaha, S.K. Shukla, G.C. Dubey, P. Singh, C.S. Kushwaha, S.K. Shukla, G.C. Dubey, Synthesis and humidity sensing properties of NiO intercalated polyaniline nanocomposite. Polym. Plast. Technol. Eng. 58, 139–147 (2019). https://doi.org/10.1080/03602559.2018.1466170

    Article  CAS  Google Scholar 

  23. K.P. Biju, M.K. Jain, Effect of polyethylene glycol additive in sol on the humidity sensing properties of a TiO2 thin film. Meas. Sci. Technol. 18, 2991–2996 (2007). https://doi.org/10.1088/0957-0233/18/9/033

    Article  CAS  Google Scholar 

  24. V.R. Khadse, S. Thakur, K.R. Patil, P. Patil, Humidity-sensing studies of cerium oxide nanoparticles synthesized by non-isothermal precipitation. Sens. Actuators B Chem. 203, 229–238 (2014). https://doi.org/10.1016/j.snb.2014.06.107

    Article  CAS  Google Scholar 

  25. B. Chethan, H.G.R. Prakash, Y.T. Ravikiran, S.C. Vijayakumari, S. Thomas, Polypyyrole based core-shell structured composite based humidity sensor operable at room temperature. Sens. Actuators B Chem. 296, 126639 (2019). https://doi.org/10.1016/j.snb.2019.126639

    Article  CAS  Google Scholar 

  26. B. Chethan, Y.T. Ravikiran, S.C. Vijayakumari, H.G. Rajprakash, S. Thomas, Nickel substituted cadmium ferrite as room temperature operable humidity sensor. Sens. Actuators A Phys. 280, 466–474 (2018). https://doi.org/10.1016/j.sna.2018.08.017

    Article  CAS  Google Scholar 

  27. F.M. Ernsberger, Nonconformist Ion. J. Am. Ceram. Soc. 66, 747–750 (1983)

    Article  CAS  Google Scholar 

Download references

Funding

No funding support received from any funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Nagabhushana or Y. T. Ravikiran.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1356 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunjal, L.B., Manjunatha, S., Chethan, B. et al. Humidity sensing performance of polyaniline-neodymium oxide composites. MRS Communications 13, 248–255 (2023). https://doi.org/10.1557/s43579-023-00336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00336-3

Keywords

Navigation