Skip to main content

Advertisement

Log in

Curcumin nanoparticles impregnated collagen/demineralized bone matrix/olive leaves extract biocomposites as a potential bone implant: Preparation, characterization, and biocompatibility

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this study, nanoceramic composite (NCC) was developed using the Type I collagen (COLL), demineralized bone matrix (DBM), olive leaves extract (OLE), and curcumin nanoparticles (Cu-NPs). The study evaluates the possibility of using this NCC as a bone tissue engineering material. The developed NCC was characterized by its mechanical, physicochemical, and biocompatibility properties. The NCC possessed excellent mechanical properties. A biocompatibility study was proved in the MG-63 osteoblast cell line on NCC. The study introduced a method for producing a functionalized implant, such as bone tissue engineering material, using natural resources. In vitro bone healing abilities of NCC were demonstrated in our investigation. As a result, NCC could be suggested as a source of bone graft and healing agents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Zhang, R.M.J. Powers, L.J. Wolfinbarger, Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J. Periodontol. 68, 1085 (1997)

    Article  CAS  Google Scholar 

  2. B. Han, B. Tang, M.E. Nimni, Quantitative and sensitive in vitro assay for osteoinductive activity of demineralized bone matrix. J. Orthop. Res. 21, 648 (2003)

    Article  CAS  Google Scholar 

  3. R.K. Bhawana, H.S. Basniwal, V.K. Buttar, N. Jain, Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J. Agric. Food Chem. 59, 2056 (2011)

    Article  CAS  Google Scholar 

  4. I. Erdogan, M. Demir, O. Bayraktar, Olive leaf extract as a crosslinking agent for the preparation of electrospun Zein fibers. J. Appl. Polym. Sci. 132, 41338 (2015)

    Article  Google Scholar 

  5. Q. Zhang, S.Q. Yan, M.Z. Li, Silk fibroin based porous materials. Materials (Basel) 2, 2276 (2009)

    Article  CAS  Google Scholar 

  6. T. Nagai, N. Suzuki, Isolation of collagen from fish waste material—skin, bone and fins. Food Chem. 68, 277 (2000)

    Article  CAS  Google Scholar 

  7. I.C. Chen, C.Y. Su, C.C. Lai, Y.S. Tsou, Y. Zheng, H.W. Fang, Preparation and characterization of moldable demineralized bone matrix/calcium sulfate composite bone graft materials. J. Funct. Biomater. 12, 56 (2021)

    Article  CAS  Google Scholar 

  8. S. Batikan Kavukcu, C. Sinam, T. Hayati, R. Senthil, Curcumin nanoparticles supported gelatin–collagen scaffold: preparation, characterization, and in vitro study. Toxicol. Rep. 8, 1475 (2021)

    Article  Google Scholar 

  9. G. Krithiga, T. Hemalatha, R. Deepachitra, T.P. Sastry, Study on osteopotential activity of Terminalia arjuna bark extract incorporated bone substitute. Bull. Mater. Sci. 37, 1331 (2014)

    Article  CAS  Google Scholar 

  10. P. Jitendra, A.M. Rajam, T. Kalaivani, A.B. Mandal, C. Rose, Collagen based silver nanoparticles for biological applications. Appl. Mater. Interfaces 5, 7291 (2013)

    Google Scholar 

  11. Z. Wang, X. Wang, Y. Wang, Y. Zhu, X. Liu, Q. Zhou, NanoZnO-modified titanium implants for enhanced anti-bacterial activity, osteogenesis and corrosion resistance. J. Nanobiotechnol. 19, 353 (2021)

    Article  CAS  Google Scholar 

  12. R. Senthil, Ç. Sinem, S. Batıkan Kavukcu, A. Wilson Aruni, Fabrication of cylindrical bone graft substitute supported by reduced graphene-oxide and nanocurcumin to promotes the bone tissue development. Mater. Lett. 322, 132475 (2022)

    Article  CAS  Google Scholar 

  13. T.M.S.U. Gunathilake, Y.C. Ching, H. Uyama, N.D. Hai, C.H. Chuah, Enhanced curcumin loaded nanocellulose: a possible inhalable nanotherapeutic to treat COVID-19. Cellulose 29, 1821 (2022)

    Article  CAS  Google Scholar 

  14. R. Tanoue, K. Ohta, Y. Miyazono, J. Iwanaga, A. Koba, T. Natori, O. Iwamoto, K. Nakamura, Three-dimensional ultrastructural analysis of the interface between an implanted demineralised dentin matrix and the surrounding newly formed bone. Sci. Rep. 8, 2858 (2018)

    Article  Google Scholar 

  15. D. Zheng, C. Huang, H. Huang, Y. Zhao, M.R.U. Khan, H. Zhao, L. Huang, Antibacterial mechanism of curcumin: a review. Chem. Biodivers. 17, 2000171 (2020)

    Article  Google Scholar 

  16. J.K. Trigo-Gutierrez, Y. Vega-Chacón, A.B. Soares, E.G.O. Mima, Antimicrobial activity of curcumin in nanoformulations: a comprehensive review. Int. J. Mol. Sci. 22, 7130 (2021)

    Article  CAS  Google Scholar 

  17. S. Prabhu, E.K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2, 1 (2012)

    Article  Google Scholar 

  18. G. Li, L. Chen, K. Chen, Curcumin promotes femoral fracture healing in a rat model by activation of autophagy. Med. Sci. Monit. 24, 4064 (2018)

    Article  CAS  Google Scholar 

  19. A.J. Bailey, S.F. Wotton, T.J. Sims, P.W. Thompson, Post-translational modifications in the collagen of human osteoporotic femoral head. Biochem. Biophys. Res. Commun. 185, 801 (1992)

    Article  CAS  Google Scholar 

  20. N.I.M. Fadilah, I.L.M. Isa, W.S.W.K. Zaman, Y. Tabata, M.B. Fauzi, The effect of nanoparticle-incorporated natural-based biomaterials towards cells on activated pathways: a systematic review. Polymers 14, 476 (2022)

    Article  CAS  Google Scholar 

  21. E. Gruskin, B.A. Doll, F.W. Futrell, J.P. Schmitz, J.O. Hollinger, Demineralized bone matrix in bone repair: history and use. Adv. Drug Deliv. Rev. 64(12), 1063–1077 (2012)

    Article  CAS  Google Scholar 

  22. H. Nekounam, M.R. Kandi, D. Shaterabadi, H. Samadian, N. Mahmoodi, E. Hasanzadeh, R. Faridi-Majidi, Silica nanoparticles-incorporated carbon nanofibers as bioactive biomaterial for bone tissue engineering. Diam. Relat. Mater. 115, 108320 (2021)

    Article  CAS  Google Scholar 

  23. L. Chronopoulou, I. Cacciotti, A. Amalfitano, A. Di Nitto, V. D’Arienzo, G. Nocca, C. Palocci, Biosynthesis of innovative calcium phosphate/hydrogel composites: physicochemical and biological characterization. Nanotechnology 32, 095102 (2020)

    Article  Google Scholar 

  24. M.P. Prabhakaran, J. Venugopal, S. Ramakrishna, Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater. 5, 2884 (2009)

    Article  CAS  Google Scholar 

  25. W.J. Landis, R. Jacquet, Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif. Tissue Int. 93, 29 (2013)

    Article  Google Scholar 

  26. T. Cairns, G. Eglinton, Hydrogen bonding in phenols. Nature 196, 535 (1962)

    Article  CAS  Google Scholar 

  27. B. Kuhn, B. Mohr, M. Stahl, Intramolecular hydrogen bonding in medicinal chemistry. J. Med. Chem. 53, 2601 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The award of TUBITAK 2232-International Fellowship for Outstanding Researcher (Project No. 118C350) to Dr. Rethinam Senthil is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rethinam Senthil.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthil, R., Sumathi, S., Sivakumar, P.M. et al. Curcumin nanoparticles impregnated collagen/demineralized bone matrix/olive leaves extract biocomposites as a potential bone implant: Preparation, characterization, and biocompatibility. MRS Communications 13, 136–142 (2023). https://doi.org/10.1557/s43579-023-00324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00324-7

Keywords

Navigation