Skip to main content

Advertisement

Log in

Hydroxyapatite and Whitlockite Incorporated Cellulose Reinforced Poly-Caprolactone (PCL): Biomimetic Nanocomposites for Bone Tissue Engineering Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Structure-activity relationship of nano-hydroxyapatite (nHA) and whitlockite (nWH) nanocomposites using Poly-Caprolactone (PCL) and Microcrystalline cellulose (MCC) composite (95/5, 90/10, 85/15 wt%) for bone tissue regeneration is elucidated in this report. Morphology, crystallinity, thermal properties, degradation, mechanical properties, and In Vitro, In Vivo biocompatibility of composites were systematically evaluated. Briefly, nHA and nWH nanoparticles were synthesized by chemical precipitation and trisolvent systems, respectively. MCC 5 wt% in PCL matrix (PCL/MCC-5) showed enhanced mechanical strength, increased crystallinity, and porous morphology compared to virgin PCL. Morphological analysis of nHA and nWH reinforced PCL/MCC-5 composite revealed a reduction in the pore size. Structural analysis, XRD, FTIR, and DSC concluded that nHA and nWH addition (1–10 wt%) improved the crystallinity of the PCL/MCC-5 by acting as nucleating sites for polymer chains. The presence of Van der Waals forces of attraction caused an increase in crystallinity and a decrease in pore size. Mechanical testing revealed an increase in modulus by 113 times for 10 wt% nHA and 125 times increase on 10 wt% nWH loading compared to virgin PCL. In vitro cytocompatibility using Vero cell line showed ~ 88% cell viability for PCL/MCC-5 composite and ~ 94% for 5wt% and 10 wt% nHA loaded composite on day 7, which shows nanoparticles improved osteoconductive and osteinductivity of the composites. LIVE/DEAD assay with NIH3T3-L1 cell lines with 1% nHA showed the highest cell viability for all 3, 7, 14, and 21 days. In vivo trials with 10 wt% of nHA and nWH demonstrated full and thick muscle adherence and bio-interfacial affinity to the nanocomposites in comparison to virgin PCL. Our findings suggest that PCL/MCC composite with nHA and nWH may serve as a promising bone implant.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ishman SL, Friedland DR (2004) Temporal bone fractures: traditional classification and clinical relevance. Laryngoscope 114:1734–1741

    Article  PubMed  Google Scholar 

  2. Roberts TT, Rosenbaum AJ (2012) Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis 8:114–124

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yu X, Yao S, Chen C, Wang J, Li Y, Wang Y, Khademhosseini A, Wan J, Wu Q (2020) Preparation of poly (ether-ether-ketone)/nanohydroxyapatite composites with improved mechanical performance and biointerfacial affinity. ACS Omega 5:29398–29406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shuai C, Yu L, Feng P, Gao C, Peng S (2020) Interfacial reinforcement in bioceramic/biopolymer composite bone scaffold: the role of coupling agent. Colloids Surf B 193:111083

    Article  CAS  Google Scholar 

  5. Prasadh S, Wong RCW (2018) Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci Int 15:48–55

    Article  Google Scholar 

  6. Morouço P, Biscaia S, Viana T, Franco M, Malça C, Mateus A, Moura C, Ferreira FC, Mitchell G, Alves NM (2016) Fabrication of poly (-caprolactone) scaffolds reinforced with cellulose nanofibers, with and without the addition of hydroxyapatite nanoparticles. BioMed Res Int. https://doi.org/10.1155/2016/1596157

    Article  PubMed  PubMed Central  Google Scholar 

  7. Youseflee P, Ranjbar FE, Bahraminasab M, Ghanbari A, Faradonbeh DR, Arab S, Alizadeh A, Nooshabadi VT (2022) Exosome loaded hydroxyapatite (HA) scaffold promotes bone regeneration in calvarial defect: an in vivo study. Cell Tissue Bank. https://doi.org/10.1007/s10561-022-10042-4

    Article  PubMed  Google Scholar 

  8. Black CR, Goriainov V, Gibbs D, Kanczler J, Tare RS, Oreffo RO (2015) Bone tissue engineering. Curr Mol Biol Rep 1:132–140

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nazir F, Iqbal M, Khan AN, Mazhar M, Hussain Z (2021) Fabrication of robust poly L-lactic acid/cyclic olefinic copolymer (PLLA/COC) blends: study of physical properties, structure, and cytocompatibility for bone tissue engineering. J Mater Res Technol 13:1732–1751

    Article  CAS  Google Scholar 

  10. Nazir F, Iqbal M (2021) Comparative study of crystallization, mechanical properties, and in vitro cytotoxicity of nanocomposites at low filler loadings of hydroxyapatite for bone-tissue engineering based on poly (L-lactic acid)/cyclo olefin copolymer. Polymers 13:3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aghajan MH, Panahi-Sarmad M, Alikarami N, Shojaei S, Saeidi A, Khonakdar HA, Shahrousvan M, Goodarzi V (2020) Using solvent-free approach for preparing innovative biopolymer nanocomposites based on PGS/gelatin. Eur Polymer J 131:109720

    Article  CAS  Google Scholar 

  12. Nazir F, Iqbal M (2022) Piezoelectric MoS2 nanoflowers (NF’s) for targeted cancer therapy by gelatin-based shear thinning hydrogels. In vitro and in vivo trials. React Funct Polym 181:105435

    Article  CAS  Google Scholar 

  13. Nazir F, Abbas L, Iqbal M (2022) A comparative insight into the mechanical properties, antibacterial potential, and cytotoxicity profile of nano-hydroxyapatite and nano-whitlockite-incorporated poly-L-lactic acid for bone tissue engineering. Appl Nanosci 12:47–68

    Article  CAS  Google Scholar 

  14. Nazir F, Ashraf I, Iqbal M, Ahmad T, Anjum S (2021) 6-deoxy-aminocellulose derivatives embedded soft gelatin methacryloyl (GelMA) hydrogels for improved wound healing applications: in vitro and in vivo studies. Int J Biol Macromol 185:419–433

    Article  CAS  PubMed  Google Scholar 

  15. Abrisham M, Noroozi M, Panahi-Sarmad M, Arjmand M, Goodarzi V, Shakeri Y, Golbaten-Mofrad H, Dehghan P, Sahzabi AS, Sadri M (2020) The role of polycaprolactone-triol (PCL-T) in biomedical applications: a state-of-the-art review. Eur Polymer J 131:109701

    Article  CAS  Google Scholar 

  16. Rostamian M, Kalaee MR, Dehkordi SR, Panahi-Sarmad M, Tirgar M, Goodarzi V (2020) Design and characterization of poly (glycerol-sebacate)-co-poly (caprolactone)(PGS-co-PCL) and its nanocomposites as novel biomaterials: the promising candidate for soft tissue engineering. Eur Polymer J 138:109985

    Article  CAS  Google Scholar 

  17. Ebrahimi Z, Irani S, Ardeshirylajimi A, Seyedjafari E (2022) Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite. Sci Rep 12:1–15

    Article  Google Scholar 

  18. Ou S-F, Chiou S-Y, Ou K-L (2013) Phase transformation on hydroxyapatite decomposition. Ceram Int 39:3809–3816

    Article  CAS  Google Scholar 

  19. Mohammadalizadeh Z, Bahremandi-Toloue E, Karbasi S (2022) Recent advances in modification strategies of pre-and post-electrospinning of nanofiber scaffolds in tissue engineering. React Funct Polym 172:105202

    Article  CAS  Google Scholar 

  20. Alemán-Domínguez ME, Ortega Z, Benítez AN, Monzón M, Wang L, Tamaddon M, Liu C (2020) Microcrystalline cellulose as filler in polycaprolactone matrices, industry 40–shaping the future of the digital world. CRC Press, Boca Raton, pp 240–245

    Google Scholar 

  21. Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, Akbari M (2023) Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioactive Mater 20:137–163

    Article  CAS  Google Scholar 

  22. Hosseini H, Teymouri M, Saboor S, Khalili A, Goodarzi V, Hajipoor FP, Khonakdar HA, Shojaei S, Asefnejad A, Bagheri H (2019) Challenge between sequence presences of conductive additives on flexibility, dielectric and supercapacitance behaviors of nanofibrillated template of bacterial cellulose aerogels. Eur Polymer J 115:335–345

    Article  CAS  Google Scholar 

  23. Saeedi M, Vahidi O, Goodarzi V, Saeb MR, Izadi L, Mozafari M (2017) A new prospect in magnetic nanoparticle-based cancer therapy: taking credit from mathematical tissue-mimicking phantom brain models. Nanomed: Nanotechnol, Biol Med 13:2405–2414

    Article  CAS  Google Scholar 

  24. Panahi-Sarmad M, Abrisham M, Noroozi M, Goodarzi V, Arjmand M, Sadri M, Dehghan P, Amirkiai A, Khonakdar HA (2020) Programing polyurethane with rational surface-modified graphene platelets for shape memory actuators and dielectric elastomer generators. Eur Polymer J 133:109745

    Article  CAS  Google Scholar 

  25. Nemati-Kande E, Karimian R, Goodarzi V, Ghazizadeh E (2020) Feasibility of pristine, Al-doped and Ga-doped Boron Nitride nanotubes for detecting SF4 gas: a DFT, NBO and QTAIM investigation. Appl Surf Sci 510:145490

    Article  CAS  Google Scholar 

  26. Hosseini H, Zirakjou A, McClements DJ, Goodarzi V, Chen W-H (2022) Removal of methylene blue from wastewater using ternary nanocomposite aerogel systems: carboxymethyl cellulose grafted by polyacrylic acid and decorated with graphene oxide. J Hazard Mater 421:126752

    Article  CAS  PubMed  Google Scholar 

  27. Lughmani F, Nazir F, Khan SA, Iqbal M (2022) Novel functionalized cellulose derivatives fabricated with Cu nanoparticles: synthesis, characterization and degradation of organic pollutants. Cellulose 29:1911–1928

    Article  CAS  Google Scholar 

  28. Rostamian M, Hosseini H, Fakhri V, Talouki PY, Farahani M, Gharehtzpeh AJ, Goodarzi V, Su C-H (2022) Introducing a bio sorbent for removal of methylene blue dye based on flexible poly (glycerol sebacate)/chitosan/graphene oxide ecofriendly nanocomposites. Chemosphere 289:133219

    Article  CAS  PubMed  Google Scholar 

  29. Hosseini H, Pirahmadi P, Shakeri SE, Khoshbakhti E, Sharafkhani S, Fakhri V, Saeidi A, McClements DJ, Chen W-H, Su C-H (2022) A novel environmentally friendly nanocomposite aerogel based on the semi-interpenetrating network of polyacrylic acid into Xanthan gum containing hydroxyapatite for efficient removal of methylene blue from wastewater. Int J Biol Macromol 201:133–142

    Article  CAS  PubMed  Google Scholar 

  30. Arokiasamy P, Abdullah MMAB, Abd Rahim SZ, Luhar S, Sandu AV, Jamil NH, Nabiałek M (2022) Synthesis methods of hydroxyapatite from natural sources: a review. Ceram Int 48:14959–14979

    Article  CAS  Google Scholar 

  31. Kaliannagounder VK, Raj NPMJ, Unnithan AR, Park J, Park SS, Kim S-J, Park CH, Kim CS, Sasikala ARK (2021) Remotely controlled self-powering electrical stimulators for osteogenic differentiation using bone inspired bioactive piezoelectric whitlockite nanoparticles. Nano Energy 85:105901

    Article  CAS  Google Scholar 

  32. Capitelli F, Bosi F, Capelli SC, Radica F, Della Ventura G (2021) Neutron and XRD single-crystal diffraction study and vibrational properties of whitlockite, the natural counterpart of synthetic tricalcium phosphate. Crystals 11:225

    Article  CAS  Google Scholar 

  33. Wang C, Jeong K-J, Park HJ, Lee M, Ryu S-C, Hwang DY, Nam KH, Han IH, Lee J (2020) Synthesis and formation mechanism of bone mineral, whitlockite nanocrystals in tri-solvent system. J Colloid Interface Sci 569:1–11

    Article  CAS  PubMed  Google Scholar 

  34. Cooper MA, Hawthorne FC, Abdu YA, Ball NA, Ramik RA, Tait KT (2013) Wopmayite, ideally Ca6Na3 Mn (PO4) 3 (PO3OH) 4, a new phosphate mineral from the Tanco Mine, Bernic Lake, Manitoba: description and crystal structure. Can Mineral 51:93–106

    Article  CAS  Google Scholar 

  35. Fujii E, Kawabata K, Nakazaki Y, Tanizawa Y, Shirosaki Y, Hayakawa S, Osaka A (2011) Fabrication of hydroxyapatite with controlled morphology in a micro-reactor. J Ceram Soc Jpn 119:116–119

    Article  CAS  Google Scholar 

  36. Klinkaewnarong J, Utara S (2018) Ultrasonic-assisted conversion of limestone into needle-like hydroxyapatite nanoparticles. Ultrason Sonochem 46:18–25

    Article  CAS  PubMed  Google Scholar 

  37. Rajabnejadkeleshteri A, Kamyar A, Khakbiz M, Basiri H (2020) Synthesis and characterization of strontium fluor-hydroxyapatite nanoparticles for dental applications. Microchem J 153:104485

    Article  CAS  Google Scholar 

  38. Fernández MD, Guzmán DJ, Ramos JR, Fernández MJ (2019) Effect of alkyl chain length in POSS nanocage on non-isothermal crystallization behavior of PCL/amino-POSS nanocomposites. Polymers 11:1719

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nasrollahi F, Nazir F, Tavafoghi M, Hosseini V, Ali Darabi M, Paramelle D, Khademhosseini A, Ahadian S (2021) Graphene quantum dots for fluorescent labeling of gelatin-based shear‐thinning hydrogels. Adv NanoBiomed Res 1:2000113

    Article  CAS  Google Scholar 

  40. Ain QU, Khan AN, Nabavinia M, Mujahid M (2017) Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications. Mater Sci Eng: C 75:807–815

    Article  CAS  Google Scholar 

  41. Gergely G, Wéber F, Lukács I, Tóth AL, Horváth ZE, Mihály J, Balázsi C (2010) Preparation and characterization of hydroxyapatite from eggshell. Ceram Int 36:803–806

    Article  CAS  Google Scholar 

  42. Jang HL, Jin K, Lee J, Kim Y, Nahm SH, Hong KS, Nam KT (2014) Revisiting whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano 8:634–641

    Article  CAS  PubMed  Google Scholar 

  43. Arrieta MP, Leonés Gil A, Yusef M, Kenny JM, Peponi L (2020) Electrospinning of PCL-based blends: processing optimization for their scalable production. Materials 13:3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nazir F, Iqbal M (2020) Synthesis, characterization and cytotoxicity studies of aminated microcrystalline cellulose derivatives against melanoma and breast cancer cell lines. Polymers 12:2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. dos Santos FA, Iulianelli GC, Tavares MI (2017) Effect of microcrystalline and nanocrystals cellulose fillers in materials based on PLA matrix. Polym Test 61:280–288

    Article  Google Scholar 

  46. Gieroba B, Przekora A, Kalisz G, Kazimierczak P, Song CL, Wojcik M, Ginalska G, Kazarian SG, Sroka-Bartnicka A (2021) Collagen maturity and mineralization in mesenchymal stem cells cultured on the hydroxyapatite-based bone scaffold analyzed by ATR-FTIR spectroscopic imaging. Mater Sci Eng: C 119:111634

    Article  CAS  Google Scholar 

  47. Panda S, Biswas CK, Paul S (2021) A comprehensive review on the preparation and application of calcium hydroxyapatite: a special focus on atomic doping methods for bone tissue engineering. Ceram Int 47:28122–28144

    Article  CAS  Google Scholar 

  48. Alemán-Domínguez ME, Giusto E, Ortega Z, Tamaddon M, Benitez AN, Liu C (2019) Three‐dimensional printed polycaprolactone‐microcrystalline cellulose scaffolds. J Biomed Mater Res Part B: Appl Biomater 107:521–528

    Article  Google Scholar 

  49. Gómez-Lizárraga K, Flores-Morales C, Del Prado-Audelo M, Álvarez-Pérez M, Piña-Barba M, Escobedo C (2017) Polycaprolactone-and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: a comparative study. Mater Sci Eng: C 79:326–335

    Article  Google Scholar 

  50. Simao JA, Bellani CF, Branciforti MC (2017) Thermal properties and crystallinity of PCL/PBSA/cellulose nanocrystals grafted with PCL chains. J Appl Polymer Sci. https://doi.org/10.1002/app.44493

    Article  Google Scholar 

  51. Ruseckaite RA, Jiménez A (2003) Thermal degradation of mixtures of polycaprolactone with cellulose derivatives. Polym Degrad Stab 81:353–358

    Article  CAS  Google Scholar 

  52. Karimian R, Mehrabani MG, Mehramuz B, Ganbarov K, Ejlali L, Tanomand A, Kamounah FS, Rezaee MA, Yousefi M, Sheykhsaran E (2020) Poly (ε-Caprolactone)/cellulose nanofiber blend nanocomposites containing ZrO2 nanoparticles: a new biocompatible wound dressing bandage with antimicrobial activity. Adv Pharm Bull 10:577

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jarcho M, Salsbury R, Thomas M, Doremus R (1979) Synthesis and fabrication of β-tricalcium phosphate (whitlockite) ceramics for potential prosthetic applications. J Mater Sci 14:142–150

    Article  CAS  Google Scholar 

  54. Cocca M, Avolio R, Gentile G, Di Pace E, Errico M, Avella M (2015) Amorphized cellulose as filler in biocomposites based on poly (ɛ-caprolactone). Carbohydr Polym 118:170–182

    Article  CAS  PubMed  Google Scholar 

  55. Mi H-Y, Jing X, Peng J, Salick MR, Peng X-F, Turng L-S (2014) Poly (ε-caprolactone)(PCL)/cellulose nano-crystal (CNC) nanocomposites and foams. Cellulose 21:2727–2741

    Article  CAS  Google Scholar 

  56. Celebi H, Ilgar M, Seyhan AT (2022) Evaluation of the effect of isocyanate modification on the thermal and rheological properties of poly (ε-caprolactone)/cellulose composites. Polym Bull 79:4941–4955

    Article  CAS  Google Scholar 

  57. Chen J, Xu C, Wu D, Pan K, Qian A, Sha Y, Wang L, Tong W (2015) Insights into the nucleation role of cellulose crystals during crystallization of poly (β-hydroxybutyrate). Carbohydr Polym 134:508–515

    Article  CAS  PubMed  Google Scholar 

  58. Eftekhari S, El Sawi I, Bagheri ZS, Turcotte G, Bougherara H (2014) Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications. Mater Sci Eng: C 39:120–125

    Article  CAS  Google Scholar 

  59. Hickey DJ, Ercan B, Sun L, Webster TJ (2015) Adding MgO nanoparticles to hydroxyapatite–PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomater 14:175–184

    Article  CAS  PubMed  Google Scholar 

  60. Guo Z, Yang C, Zhou Z, Chen S, Li F (2017) Characterization of biodegradable poly (lactic acid) porous scaffolds prepared using selective enzymatic degradation for tissue engineering. RSC Adv 7:34063–34070

    Article  CAS  Google Scholar 

  61. Gaharwar AK, Dammu SA, Canter JM, Wu C-J, Schmidt G (2011) Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly (ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 12:1641–1650

    Article  CAS  PubMed  Google Scholar 

  62. Koupaei N, Karkhaneh A, Joupari MD (2015) Preparation and characterization of (PCL-crosslinked‐PEG)/hydroxyapatite as bone tissue engineering scaffolds. J Biomed Mater Res Part A 103:3919–3926

    Article  CAS  Google Scholar 

  63. Passos MF, Fernández-Gutiérrez M, Vázquez-Lasa B, San Román J, Maciel Filho R (2016) PHEMA-PLLA semi-interpenetrating polymer networks: a study of their swelling kinetics, mechanical properties and cellular behavior. Eur Polymer J 85:150–163

    Article  CAS  Google Scholar 

  64. Zhu Y, Sheng Y, Zheng L, Qin L, Ngai T (2019) Poly (l-lactic acid)(PLLA) Coatings with controllable hierarchical porous structures on magnesium substrate: an evaluation of corrosion behavior and cytocompatibility. ACS Appl Bio Mater 2:3843–3853

    Article  CAS  PubMed  Google Scholar 

  65. Hickey DJ (2014) MgO nanocomposites as antibacterial biomaterials for orthopedic tissue engineering. Northeastern University, Boston

    Google Scholar 

  66. Hickey DJ, Ercan B, Chung S, Webster TJ, Sun L, Geilich B (2014) MgO nanocomposites as new antibacterial materials for orthopedic tissue engineering applications, 40th Annual Northeast Bioengineering Conference (NEBEC), IEEE, pp. 1–2

  67. Yu X, Yao S, Chen C, Wang J, Li Y, Wang Y, Khademhosseini A, Wan J, Wu QJAO (2020) Preparation of poly (ether-ether-ketone)/nanohydroxyapatite composites with improved mechanical performance and biointerfacial affinity. ACS Omega 5:29398–29406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan for the facilitation of characterization. We are thankful School of Biological Sciences, University of the Punjab, Lahore, Pakistan for providing cell culture facilities.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, FN, and MI; methodology, FN, and MI; software, FN, and LA; writing—original draft preparation, FN, LA, and MI; writing—review and editing, FN and LA, MI supervision, MI, and cell culture work, AT. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mudassir Iqbal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, L., Nazir, F., Gulzar, A. et al. Hydroxyapatite and Whitlockite Incorporated Cellulose Reinforced Poly-Caprolactone (PCL): Biomimetic Nanocomposites for Bone Tissue Engineering Applications. J Polym Environ 31, 2093–2113 (2023). https://doi.org/10.1007/s10924-022-02717-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02717-6

Keywords

Navigation