Skip to main content
Log in

LDH as basicity enhancers of new mesoporous nanocomposites

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The surface reactivity of an SBA-15 can be modified through combination with a layered double hydroxide (LDH) to obtain high basicity composites among other properties. In this work, the effect of the hydrothermal crystallization method on the basicity properties of the composites was evaluated. For this, a ZnMg/Al-LDH were coprecipitated on a SBA-15, and crystallized by microwave, ultrasound irradiation, or conventional preparation. The results showed that the in situ method was the most efficient to obtain highly dispersed nano-LDH on the SBA-15 compound, which leads to LDH/SBA-15 composites with a very high basicity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Data availability

The manuscript has no associated data.

References

  1. F.G. Cirujano, A. Dhakshinamoorthy, New J. Chem. 46, 1469 (2022). https://doi.org/10.1039/D1NJ05091E

    Article  CAS  Google Scholar 

  2. D. Tichit, M.G. Álvarez, ChemEngineering 6, 45 (2022). https://doi.org/10.3390/chemengineering6040045

    Article  CAS  Google Scholar 

  3. F.D. Velázquez-Herrera, D. González-Rodal, G. Fetter, E. Pérez-Mayoral, Appl. Clay Sci. (2020). https://doi.org/10.1016/j.clay.2020.105833

    Article  Google Scholar 

  4. M.S. Legnoverde, S. Simonetti, E.I. Basaldella, Appl. Surf. Sci. 300, 37 (2014). https://doi.org/10.1016/j.apsusc.2014.01.198

    Article  CAS  Google Scholar 

  5. M.D. Popova, Á. Szegedi, I.N. Kolev, J. Mihály, B.S. Tzankov, G.T. Momekov, N.G. Lambov, K.P. Yoncheva, Int. J. Pharm. 436, 778 (2012). https://doi.org/10.1016/j.ijpharm.2012.07.061

    Article  CAS  Google Scholar 

  6. C. Ji, Y. Wang, N. Zhao, Appl. Surf. Sci. 481, 337 (2019). https://doi.org/10.1016/j.apsusc.2019.03.039

    Article  CAS  Google Scholar 

  7. S. Sadjadi, M.M. Heravi, V. Zadsirjan, V. Farzaneh, Appl. Surf. Sci. 426, 881 (2017). https://doi.org/10.1016/j.apsusc.2017.06.182

    Article  CAS  Google Scholar 

  8. M. Prabu, M. Manikandan, P. Kandasamy, P.R. Kalaivani, N. Rajendiran, T. Raja, ACS Omega 4, 3500 (2019). https://doi.org/10.1021/acsomega.8b02547

    Article  CAS  Google Scholar 

  9. F.D. Velázquez-Herrera, D. González-Rodal, G. Fetter, E. Pérez-Mayoral, Microporous Mesoporous Mater. 309, 110569 (2020). https://doi.org/10.1016/j.micromeso.2020.110569

    Article  CAS  Google Scholar 

  10. C.V. Pramod, K. Upendar, V. Mohan, D.S. Sarma, G.M. Dhar, P.S.S. Prasad, B.D. Raju, K.S.R. Rao, J. CO2 Util. 12, 109 (2015). https://doi.org/10.1016/j.jcou.2015.05.002

    Article  CAS  Google Scholar 

  11. T. Baskaran, J. Christopher, T.G. Ajithkumar, A. Sakthivel, Appl. Catal. A Gen. 488, 119 (2014). https://doi.org/10.1016/j.apcata.2014.09.024

    Article  CAS  Google Scholar 

  12. A. Pérez-Verdejo, Á. Sampieri, H. Pfeiffer, M. Ruiz-Reyes, J.-D. Santamaría, G. Fetter, Beilstein J. Nanotechnol. 5, 1226 (2014). https://doi.org/10.3762/bjnano.5.136

    Article  CAS  Google Scholar 

  13. F.D. Velázquez-Herrera, M. Lobo-Sánchez, G. Fetter, Mater. Today Commun. (2022). https://doi.org/10.1016/j.mtcomm.2022.103832

    Article  Google Scholar 

  14. G. Corro, N. Sánchez, U. Pal, S. Cebada, J.L.G. Fierro, Appl. Catal. B Environ. 203, 43 (2017). https://doi.org/10.1016/j.apcatb.2016.10.005

    Article  CAS  Google Scholar 

  15. M.J. dos Reis, F. Silvério, J. Tronto, J.B. Valim, J. Phys. Chem. Solids 65, 487 (2004). https://doi.org/10.1016/j.jpcs.2003.09.020

    Article  CAS  Google Scholar 

  16. Z. Fa-Ai, S. Cheng, Y. Cai-Li, J. Polym. Res. 18, 1757 (2011). https://doi.org/10.1007/s10965-011-9582-x

    Article  CAS  Google Scholar 

  17. J. Flores-Cantera, J.A. Cruz-Mérida, F.D. Velázquez-Herrera, S.P. Paredes-Carrera, Y. Zarazua-Aguilar, MRS Commun. (2022). https://doi.org/10.1557/s43579-022-00190-9

    Article  Google Scholar 

  18. F.D. Velázquez-Herrera, G. Fetter, Clay Miner. 55, 31 (2020). https://doi.org/10.1180/clm.2020.2

    Article  CAS  Google Scholar 

  19. J.P. Thielemann, F. Girgsdies, R. Schlögl, C. Hess, Beilstein J. Nanotechnol. 2, 110 (2011). https://doi.org/10.3762/bjnano.2.13

    Article  CAS  Google Scholar 

  20. F.D. Velázquez-Herrera, G. Fetter, V. Rosato, A.M. Pereyra, E.I. Basaldella, J. Environ. Chem. Eng. 6, 3376 (2018). https://doi.org/10.1016/j.jece.2018.04.069

    Article  CAS  Google Scholar 

  21. M. Sun, Y. Wang, X. Wang, Q. Liu, M. Li, Y.M. Shulga, Z. Li, Gels 8, 581 (2022). https://doi.org/10.3390/gels8090581

    Article  CAS  Google Scholar 

  22. A. Misol, F.M. Labajos, A. Morato, V. Rives, Appl. Clay Sci. 189, 105539 (2020). https://doi.org/10.1016/j.clay.2020.105539

    Article  CAS  Google Scholar 

  23. K. Dashtian, R. Zare-Dorabei, J. Colloid Interface Sci. 494, 114 (2017). https://doi.org/10.1016/j.jcis.2017.01.072

    Article  CAS  Google Scholar 

  24. S. Nishijima, S. Matsumura, Y. Asakuma, A. Saptoro, IOP Conf. Ser. Mater. Sci. Eng. 206, 012055 (2017). https://doi.org/10.1088/1757-899X/206/1/012055

    Article  Google Scholar 

  25. H. Suo, H. Duan, C. Chen, J.-C. Buffet, D. O’Hare, RSC Adv. 9, 3749 (2019). https://doi.org/10.1039/C9RA00188C

    Article  CAS  Google Scholar 

  26. R. Rojas, Chem. Eng. J. 303, 331 (2016). https://doi.org/10.1016/j.cej.2016.06.007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

F.D. Velázquez-Herrera thanks CONACYT for the fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Geolar Fetter.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velázquez-Herrera, F.D., Sampieri, A. & Fetter, G. LDH as basicity enhancers of new mesoporous nanocomposites. MRS Communications 13, 95–101 (2023). https://doi.org/10.1557/s43579-022-00317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00317-y

Keywords

Navigation