Skip to main content
Log in

Improvement of the optical absorption of a photovoltaic device by embedding an ultra-thin film of CdSexTe1–x in its absorber layer

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

It has been reported with the use of thin films placed in the p-type and n-type layer interface in photovoltaic devices, the short-circuit current density (Jsc) increases, this spite of decreasing the open–circuit voltage (Voc). In this work, in order to increase the light absorbance, and therefore, contribute to an increment in Jsc and Voc, a novel architecture has been proposed by the deposition of a CdSe0.6Te0.4 ultra-thin film placed inside de p-type layer. The proposed structure exhibited an increment in power conversion efficiency compared to another fabricated with the conventional structure.

Graphical abstract

PV device structures. (a) n–p device structure; (b) N–P MLs device structure the interface (c) proposed N–P MLs device structure inside the absorber layer; (d) proposed PV device already deposited structure. (a) (b) CdS layer before and after annealing (c) (d) CdSe layer before and after annealing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. R.P. Dutta, P.K. Saikia, An electrical and structural studies of multilayer of CdS, CdTe and ZnSe thin films deposited by thermal evaporation method. Int. J. Innov. Res. Dev. 1, 73–82 (2012). https://doi.org/10.1007/s13204-012-0150-4

    Article  CAS  Google Scholar 

  2. M.M. Kamble, S.R. Rondiya, B.R. Bade et al., Optical, structural and morphological study of CdS nanoparticles: role of sulfur source. Nanomater. Energy 9(1), 72–81 (2020). https://doi.org/10.1680/jnaen.19.00041

    Article  Google Scholar 

  3. D.H. Al Refaei, L.M. Al Taan, L.A. Najam, The effect of α-particles on structural, optical and morphological properties for cadmium selenide thin film. Phys Conf. Ser. 1973, 012155 (2021). https://doi.org/10.1088/1742-6596/1973/1/012155

    Article  CAS  Google Scholar 

  4. S.K. Shinde, J.V. Thombare, D.P. Dubal, V.J. Fulari, Electrochemical synthesis of photosensitive nano-nest like CdSe0.6Te0.4 thin films. Appl. Surf. Sci. 282, 561–565 (2013). https://doi.org/10.1016/j.apsusc.2013.06.010

    Article  CAS  Google Scholar 

  5. S.K. Shinde, G.S. Ghodake, D.P. Dubal, H.D. Dhaygude, D.-Y. Kim, V.J. Fulari, Enhanced photoelectrochemical properties of nanoflower-like hexagonal CdSe0.6Te0.4: effect of electron beam irradiation. J. Ind. Eng. Chem. 45, 92–98 (2017). https://doi.org/10.1016/j.jiec.2016.09.007

    Article  CAS  Google Scholar 

  6. S.K. Shinde, G.S. Ghodake, N.C. Maile, H.D. Dhaygude, S. Kim, A.D. Phule, R.V. Patel, D.Y. Kim, V.J. Fulari, Porous CdSe0.6Te0.4 nanoflowers-nanosphere: facile electrochemical synthesis and excellent for photoelectrochemical cell performance. Ionic 23(9), 2489–2496 (2017). https://doi.org/10.1007/s11581-017-2077-y

    Article  CAS  Google Scholar 

  7. B.B. Dumre, N.J. Szymanski, V. Adhikari, I. Khatri, D. Gall, S.V. Khare, Improved optoelectronic properties in CdSexTe1−x through controlled composition and short-range order. Sol. Energy 194, 742–750 (2019). https://doi.org/10.1016/j.solener.2019.10.091

    Article  CAS  Google Scholar 

  8. S. Wen, M. Li, J. Yang, X. Mei, B. Wu, X. Liu, D. Wang, Rationally controlled synthesis of CdSexTe1−x alloy nanocrystals and their application in efficient graded bandgap solar cells. Nanomaterials 7(11), 380 (2017). https://doi.org/10.3390/nano7110380

    Article  CAS  Google Scholar 

  9. K. Adaikalam, M.R. Kim, Y.S. Chae, J.K. Rhee, S. Thanikaikarasan, T. Mahalingam, Study on electrodeposited CdSexTe1-x semiconducting thin films. J. Electroanal. Chem. Interfacial Electrochem. 269(2), 399–410 (1989). https://doi.org/10.1016/0022-0728(89)85147-2

    Article  Google Scholar 

  10. Z. Loizos, N. Spyrellis, G. Maurin, D. Pottier, Semiconducting CdSexTe1-x thin films prepared by electrodeposition. J. Alloys Compds. 505(2), 578 (1989). https://doi.org/10.1016/j.jallcom.2010.06.136

    Article  CAS  Google Scholar 

  11. S.A. Fayek, S.M. El Sayed, Effect of composition and forming parameter on evaporated CdSeTe films deposited at room temperature. J. Phys. Chem. Solids 63(1), 1–8 (2002). https://doi.org/10.1016/S0022-3697(00)00029-9

    Article  CAS  Google Scholar 

  12. G. Hodes, A thin-film polycrystalline photoelectrochemical cell with 8% solar conversion efficiency. Nauture 285, 29–30 (1980). https://doi.org/10.1038/285029a0

    Article  CAS  Google Scholar 

  13. L. Kumar, B.P. Singh, A. Misra, S.C.K. Misra, T.P. Sharma, Characterization of CdSexTe1-x sintered films for photovoltaic applications. Physica B 363(205), 102–199 (2005). https://doi.org/10.1016/j.physb2005.03.008

    Article  CAS  Google Scholar 

  14. S. Velumani, M. Xavier, P.J. Sebastian, Structural and optical characterization of hot wall deposited CdSe x Te 1–x films. Sol. Energy Mater. Sol. Cells 76(3), 359–368 (2003). https://doi.org/10.1016/S0927-0248(02)00288-X

    Article  CAS  Google Scholar 

  15. A. Danielson, A. Munshi, D. Swanson, J. Drayton, G. Kartopu, K. Barth, S. Irvine, W. Sampath., “MOCVD deposition of group V doped CdTe sublimated and CdSeTe devices” IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) 978–1–5386–8529–7/18/2018. DOI:https://doi.org/10.1109/PVSC.2018.8547722

  16. N. Romeo, A. Bosio, V. Canevari, A. Podestà, Recent progress on CdS/CdTe thin film solar cells. Sol. Energy 77(6), 795–801 (2004). https://doi.org/10.1016/j.solener.2004.07.011

    Article  CAS  Google Scholar 

  17. H.A. Mohamed, Dependence of efficiency of thin-film CdS/CdTe solar cell on optical and recombination losses. J. Appl. Phys. 113(1), 093105 (2013). https://doi.org/10.1016/j.tsf.2008.11.0129

    Article  Google Scholar 

  18. Y. Jaber, S.N. Alamri, M.S. Aida, CdS thin films growth by ammonia free chemical bath deposition technique. Thin Solid Films 520(9), 3485–3489 (2012). https://doi.org/10.1016/j.tsf.2011.12.061

    Article  CAS  Google Scholar 

  19. W. Xuanzhi, High-efficiency polycrystalline CdTe thin-film solar cells. Sol. Energy 77(6), 803–814 (2004). https://doi.org/10.1109/PVSC.2002.1190619

    Article  Google Scholar 

  20. I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005). https://doi.org/10.1126/science.1117908

    Article  CAS  Google Scholar 

  21. W. Yoon, T.K. Townsend, M.P. Lumb, E.E. Foos, J.G. Tischler, Sintered CdTe nanocrystal thin films: Determination of optical constants and applications in novel inverted heterojunction solar cells. IEEE Trans. Nanotechnol. 13, 551–556 (2014). https://doi.org/10.1109/TNANO.2014.2310139

    Article  CAS  Google Scholar 

  22. H. Liu, Y. Tian, Y. Zhang, K. Gao, K. Lu, R. Wu, D. Qin, H. Wu, Z. Peng, L. Hou, W. Huang, Solution processed CdTe/CdSe nanocrystal solar cells with more than 5.5% efficiency by using an inverted device structure. J. Mater. Chem. C 3, 4227–4234 (2015). https://doi.org/10.1039/C4TC02816C

    Article  CAS  Google Scholar 

  23. B.I. MacDonald, A. Martucci, S. Rubanov, S.E. Watkins, P. Mulvaney, J.J. Jasieniak, Layer-by-layer assembly of sintered CdSexTe1-x nanocrystal solar cells. ACS Nano 6, 5995–6004 (2012). https://doi.org/10.1021/nn3009189

    Article  CAS  Google Scholar 

  24. D. Qin, Y. Xie, Q. Tan, Z. Zhang, K. Lu, M. Li, Y. Zhang, W. Xu, L. Hou, H. Wu, J. Mater. Chem. C (2016). https://doi.org/10.1039/C6TC01571A

    Article  Google Scholar 

  25. A.H. Munshi, J. Kephart, A. Abbas, J. Raguse, J.-N. Beaudry, K. Barth, J. Sites, J. Walls, W. Sampath, Polycrystalline CdSeTe/CdTe absorber cells with 28mA/cm2 short-circuit current. IEEE J. Photovolt. (2017). https://doi.org/10.1109/JPHOTOV.2017.2775139

    Article  Google Scholar 

  26. N.R. Paudel, Y.F. Yan, Enhancing the photo-currents of CdTe thin-film solar cells in both short and long wavelength regions. Appl. Phys. Lett. 105, 183510 (2014). https://doi.org/10.1063/1.4901532

    Article  CAS  Google Scholar 

  27. M. Lingg, S. Buecheler, A.N. Tiwari, Review of CdTe1−xSex thin films in solar cell applications. Coatings 9(8), 520 (2019)

    Article  CAS  Google Scholar 

  28. E. Albrasi, P.J. Thomas, P. O’Brien, Deposition of nanostructured films of CdSe and CdS using three layered water–oil–amphiphile/salt system. J. Mater. Chem. C 1(4), 671–676 (2013). https://doi.org/10.1039/C2TC00019A

    Article  CAS  Google Scholar 

  29. C. Villa-Angulo, D. Sauceda-Carvajal, J.R. Villa-Angulo, R. Villa-Angulo, Optical field dissipation in heterostructures for nanophotovoltaic devices. J. Nanophotonics 10(4), 046001 (2016). https://doi.org/10.1117/1.jnp.10.046001

    Article  Google Scholar 

  30. M. Burgelman, B. Minnaert, Including excitons in semiconductor solar cell modelling. Thin Solid Films 511–512, 214–218 (2006). https://doi.org/10.1016/j.tsf.2005.12.054

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Authors would like to thank to the Advance material research center at Monterrey (CIMAV) and Mechanical and electrical engineering faculty at Autonomous University of Nuevo León (FIME-UANL) for allowing the use of equipment and facilities for the development of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Solis-Pomar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Verdugo, L.A., Villa-Angulo, C. & Solis-Pomar, F. Improvement of the optical absorption of a photovoltaic device by embedding an ultra-thin film of CdSexTe1–x in its absorber layer. MRS Communications 12, 1250–1255 (2022). https://doi.org/10.1557/s43579-022-00303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00303-4

Keywords

Navigation