Skip to main content
Log in

Porous CdSe0.6Te0.4 nanoflowers-nanosphere: facile electrochemical synthesis and excellent for photoelectrochemical cell performance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Cadmium seleno-telluride (CdSe0.6Te0.4) ternary thin films were deposited on the stainless steel and indium-doped tin oxide (ITO) glass substrates by potentiostatic mode at different bath concentrations. The effect of the different bath concentration on the physico-chemical properties of the CdSe0.6Te0.4 was investigated in detail. Synthesized three different CdSe0.6Te0.4 thin films were characterized using x-ray diffraction (XRD), UV-Vis spectroscopy, field emission scanning electron microscopy (FE-SEM), and contact angle measurements. XRD patterns shown the establishment  of the CdSe0.6Te0.4 thin films . FE-SEM micrographs showed the development of the different nanostructures of the CdSe0.6Te0.4 samples with respect to the bath different concentration. Further photoelectrochemical cell performance of the CdSe0.6Te0.4 films was studied by forming the two-electrode cell having an arrangement; CdSe0.6Te0.4/1 M polysulfide electrolyte/counter electrode. These studies show that considerable increase in the power conversion with respect to the bath concentration and maximum efficiency is  0.96% under 30 mW/cm2 illumination.

SEM images with corresponding J-V plots of CdSe0.6Te0.4 thin films deposited at 0.050 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li JS, Sang XJ, Chen WL, Zhang LC, Zhu ZM, Ma TY, Su ZM, Wang EB (2015) ACS Appl Mater Interfaces 7:13714

    Article  CAS  Google Scholar 

  2. Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z (2015) Science 347:970

    Article  CAS  Google Scholar 

  3. Busche C, Vila-Nadal L, Yan J, Miras HN, Long D-L, Georgiev VP, Asenov A, Pedersen RH, Gadegaard N, Mirza MM, Paul DJ, Poblet JM, Cronin L (2014) Nature 515:545

    Article  CAS  Google Scholar 

  4. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Gratzel M (2011) Science 334:629

    Article  CAS  Google Scholar 

  5. Bai Y, Zhang J, Zhou D, Wang Y, Zhang M, Wang P (2011) J Am Chem Soc 133:11442

    Article  CAS  Google Scholar 

  6. Li B, Wang H, Zhang BW, Hu PF, Chen C, Guo L (2013) ACS Appl Mater Interfaces 5:12283

    Article  CAS  Google Scholar 

  7. Zhu W, Wu Y, Wang S, Li W, Li X, Chen J, Wang Z, Tian H (2011) Adv Funct Mater 21:756

    Article  CAS  Google Scholar 

  8. Liu B, Wei L, Li NN, Wu WP, Miao H, Wang YY, Shi QZ (2014) Cryst Growth Des 14:1110

    Article  CAS  Google Scholar 

  9. Ji Z, He M, Huang Z, Ozkan U, Wu YJ (2013) Am Chem Soc 135:11696

    Article  CAS  Google Scholar 

  10. Xie M, Fu X, Jing L, Luan P, Feng Y, Long-Lived Fu H (2014) Adv Energy Mater 4:1300995

    Article  Google Scholar 

  11. Zhang Z-M, Zhang T, Wang C, Lin ZL-S, Long W (2015) J Am Chem Soc 137:3197

    Article  CAS  Google Scholar 

  12. Kamat PV, Tvrdy K, Baker DR, Radich JG (2010) Chem Rev 110:6664

    Article  CAS  Google Scholar 

  13. Cooper JK, Cao J, Zhang JZ (2013) ACS Appl Mater Interfaces 5:7544

    Article  CAS  Google Scholar 

  14. Bhattacharya RN (1986) J Appl Electrochem 16:168

    Article  CAS  Google Scholar 

  15. Kot HM, Dabban MA, Abdellatif AY, Hafiz MM (2012) J Alloys Comp 512:115

    Article  Google Scholar 

  16. Weng TH (1970) J Electrochem Soc 117:725

    Article  CAS  Google Scholar 

  17. Shinde SK, Thombare JV, Dubal DP, Fulari VJ (2013) App. Surf. Sci. 282:561

    Article  CAS  Google Scholar 

  18. Bhattacharya C, Datta J (2007) J Solid State Electr 11:215

    Article  CAS  Google Scholar 

  19. El-Sayed SM (2007) App Surf Sci 253:7089

    Article  CAS  Google Scholar 

  20. Matsumur N, Sakamoto T, Saraie J (2003) J Cryst Growth 251:602

    Article  Google Scholar 

  21. Noda D, Aoki T, Nakanishi Y, Hatanaka Y (2000) Vacuum 59:701

    Article  CAS  Google Scholar 

  22. Shinde SK, Dubal DP, Ghodake GS, Fulari VJ (2014) Mater Lett 126:17

    Article  CAS  Google Scholar 

  23. Velumani S, Xavier M, Sebastian PJ (2003) Sol Energy Mater Sol Cells 76:359

    Article  CAS  Google Scholar 

  24. Liao L, Zhang H, Zhong X (2011) J Lumin 131:322

    Article  CAS  Google Scholar 

  25. Saaminathan V, Murali KR (2006) Physica B 373:233

    Article  CAS  Google Scholar 

  26. Muthukumarasamy N, Balasundaraprabhu R, Jayakumar S, Kannan MD, Ramanathaswamy P (2004) Phys Satus Solidi A 201:2312

    Article  CAS  Google Scholar 

  27. Murali KR, Subramanian V (1999) J Mater Sci 34:3417

    Article  CAS  Google Scholar 

  28. Kim JW, Shim SH, Ko SW, Jeong U, Leed CL, Kim WB (2012) J Mater Chem 22:20889

    Article  CAS  Google Scholar 

  29. Bowen Katari JE, Colvin VL, Alivisatos AP (1994) J Phys Chem 98:4109

    Article  Google Scholar 

  30. Moulder JF (1995) Handbook of x-ray photoelectron spectroscopy. Physical Electronics Inc., Minnesota

    Google Scholar 

  31. Dhaygude HD, Shinde SK, Dubal DP, Rath MC, Fulari VJ (2016) App. Surf. Sci. 368:1

    Article  CAS  Google Scholar 

  32. Dhaygude HD, Shinde SK, Dubal DP, Velhal NB, Kim DY, Fulari VJ (2017) Ionics 23:223

    Article  CAS  Google Scholar 

  33. Kale RB, Sartale SD, Chougule BK, Lokhande CD (2004) Semicond Sci Tech 19:980

    Article  CAS  Google Scholar 

  34. Lam CNC, Kim N, Hua D, Kwok DY, Hair ML, Neumann AW (2001) Colloids Surf A Physicochem Eng Asp 189:265

    Article  CAS  Google Scholar 

  35. Das NS, Ghosh PK, Mitra MK, Chattopadhyay KK (2010) Physica E: Low-dim Syst Nanostruct 42:2097–2102

    Article  CAS  Google Scholar 

  36. Dhaygude HD, Shinde SK, Takale MV, Dubal DP, Lohar GM, Fulari VJ (2016) J Mater Sci-Mater El 27:5145

    Article  CAS  Google Scholar 

  37. Shinde SK, Ghodake GS, Dubal DP, Dhaygude HD, Kim DY, Fulari VJ (2017) J Ind Eng Chem 45:92

    Article  CAS  Google Scholar 

  38. Shinde SK, Dubal DP, Ghodake GS, Kim DY, Fulari VJ (2016) Nano Struct Nano Objects 6:5

    Article  CAS  Google Scholar 

  39. Song X, Wang M, Deng J, Yang Z, Ran C, Zhang X, Yao X (2013) ACS Appl Mater Interfaces 5:5139

    Article  CAS  Google Scholar 

  40. Shinde SK, Ghodake GS, Dubal DP, Lohar GM, Lee DS, Fulari VJ (2014) Ceram Int 40:11519

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Analysis of CdSe0.6Te0.4 samples was supported by Dongguk University, Seoul, Korea Research Fund 2016–2018. One of the authors (VJF) is grateful to the University Grants Commission (UGC), New Delhi, for financial support through the scheme no. MRP. MAJOR-PHYS-2013-35168.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Y. Kim or V. J. Fulari.

Additional information

Research highlights

• Electrochemical synthesis of CdSe0.6Te0.4 thin films

• Different morphology

• Photoelectrochemical properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, S.K., Ghodake, G.S., Maile, N.C. et al. Porous CdSe0.6Te0.4 nanoflowers-nanosphere: facile electrochemical synthesis and excellent for photoelectrochemical cell performance. Ionics 23, 2489–2496 (2017). https://doi.org/10.1007/s11581-017-2077-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2077-y

Keywords

Navigation