Skip to main content
Log in

A-la-carte surface functionalization of organic materials via the combination of radiation-induced graft polymerization and multi-component reactions

  • Early Career Materials Researcher Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A feasible integration of multicomponent reactions (MCRs) into the radiation-induced graft polymerization technique (RIGP) has begun to bloom in modern polymer and materials sciences. This successful combination, the RIGP-MCR technique, has enabled an access to organic materials whose surface was chemically modified with target molecules in a diversity-oriented fashion. By taking advantage of the RIGP, surface modification reactions are now feasible with any organic substrates that are otherwise difficult to modify. As complementing the RIGP, the state-of-the-art synthetic tool of MCRs realizes an installation of multiple functional units onto material surfaces in a one-shot fashion by simply varying reactants. In this prospective article, we document the current stream and the outlook in the material sciences in the line with the historical aspects of RIGP and MCR techniques.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Reprinted with permission from Ref. 63.

Scheme 1
Figure 4

Reprinted with permission from Ref. 65. Copyright 2019 American Chemical Society.

Figure 5

Reprinted with permission from Ref. 66. Copyright 2021 SpringerNature.

Figure 6

Reprinted with permission from Ref. 68. Copyright 2021 Wiley–VCH GmbH.

Figure 7

Reprinted with permission from Ref. 82. Copyright 2021 Elsevier Ltd.

Figure 8

Reprinted with permission from Ref. 89. Copyright 2018 Taylor and Francis Ltd.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. K. Matyjaszewski, Advanced materials by atom transfer radical polymerization. Adv. Mater. 30, 1706441 (2018)

    Article  Google Scholar 

  2. M. Ouchi, T. Terashima, M. Sawamoto, Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem. Rev. 109, 4963–5050 (2009)

    Article  CAS  Google Scholar 

  3. M. Ouchi, M. Sawamoto, 50th anniversary perspective: metal-catalyzed living radical polymerization: discovery and perspective. Macromolecules 50, 2603–2614 (2017)

    Article  CAS  Google Scholar 

  4. D.J. Siegwart, J.K. Oh, K. Matyjaszewski, ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 37, 18–37 (2012)

    Article  CAS  Google Scholar 

  5. G. Moad, The emergence of RAFT polymerization. Aust. J. Chem. 59, 661–662 (2006)

    Article  CAS  Google Scholar 

  6. G. Moad, E. Rizzardo, S.H. Thang, Living radical polymerization by the RAFT process. Aust. J. Chem. 58, 379–410 (2005)

    Article  CAS  Google Scholar 

  7. C. Boyer, V. Bulmus, T.P. Davis, V. Ladmiral, J. Liu, S. Perrier, Bioapplications of RAFT polymerization. Chem. Rev. 109, 5402 (2009)

    Article  CAS  Google Scholar 

  8. G. Moad, E. Rizzardo, S.H. Thang, RAFT polymerization and some of its applications. Chem. Asian J. 8, 1634–1644 (2013)

    Article  CAS  Google Scholar 

  9. S. Perrier, 50th anniversary perspective: RAFT polymerization—a user guide. Macromolecules 50, 7433–7447 (2017)

    Article  CAS  Google Scholar 

  10. V. Sciannamea, R. Jérôme, C. Detrembleur, In-situ nitroxide-Mediated Radical Polymerization (NMP) processes: their understanding and optimization. Chem. Rev. 108, 1104–1126 (2008)

    Article  CAS  Google Scholar 

  11. N. Corrigan, K. Jung, G. Moad, C.J. Hawker, K. Matyjaszewski, C. Boyer, Reversible-deactivation radical polymerization (Controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 111, 101311 (2020)

    Article  CAS  Google Scholar 

  12. R. Barbey, L. Lavanant, D. Paripovic, N. Schüwer, C. Sugnaux, S. Tugulu, H.-A. Klok, Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem. Rev. 109, 5437–5527 (2009)

    Article  CAS  Google Scholar 

  13. J.O. Zoppe, N.C. Ataman, P. Mocny, J. Wang, J. Moraes, H.-A. Klok, Surface-Initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem. Rev. 117, 1105–1318 (2017)

    Article  CAS  Google Scholar 

  14. S.V. Orski, K.H. Fries, G.R. Sheppard, J. Locklin, High density scaffolding of functional polymer brushes: surface initiated atom transfer radical polymerization of active esters. Langmuir 26, 2136 (2010)

    Article  CAS  Google Scholar 

  15. L. Wu, U. Glebe, A. Böker, Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polym. Chem 6, 5143–5184 (2015)

    Article  CAS  Google Scholar 

  16. C.-F. Huang, Surface-initiated atom transfer radical polymerization for applications in sensors, non-biofouling surfaces and adsorbents. Polym. J. 48, 341–350 (2016)

    Article  CAS  Google Scholar 

  17. A. Olivier, F. Meyer, J.-M. Raquez, P. Damman, P. Dubois, Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: from self-assembled monolayers to patterned surfaces. Prog. Polym. Sci. 37, 157–181 (2012)

    Article  CAS  Google Scholar 

  18. C.J. Fristrup, K. Jankova, S. Hvilsted, Surface-initiated atom transfer radical polymerization—a technique to develop biofunctional coatings. Soft Matter 5, 4623–4634 (2009)

    Article  CAS  Google Scholar 

  19. N. Seko, H. Hoshina, N. Kasai, T. Shibata, S. Saiki, Y. Ueki, Development of a water purifier for radioactive cesium removal from contaminated natural water by radiation-induced graft polymerization. Radiat. Phys. Chem. 143, 33–37 (2018)

    Article  CAS  Google Scholar 

  20. N. Seko, A. Katakai, S. Hasegawa, M. Tamada, N. Kasai, H. Takeda, T. Sugo, K. Saito, Aquaculture of uranium in seawater by a fabric-adsorbent submerged system. Nucl. Technol. 144, 274–278 (2017)

    Article  Google Scholar 

  21. N. Seko, A. Katakai, M. Tamada, T. Sugo, F. Yoshii, Fine fibrous amidoxime adsorbent synthesized by grafting and uranium adsorption-elution cyclic test with seawater. Sep. Sci. Technol. 39, 3753–3767 (2004)

    Article  CAS  Google Scholar 

  22. J. Okamoto, T. Sugo, A. Katakai, H. Omichi, Amidoxime-group-containg adsorbents for metal ions synthesized by radiation-induced grafting. J. Appl. Polym. Sci. 30, 2967–2977 (1985)

    Article  CAS  Google Scholar 

  23. S. Tsuneda, K. Saito, S. Furusaki, T. Sugo, J. Okamoto, Metal collection using chelating hollow fiber membrane. J. Membr. Sci. 58, 221–234 (1991)

    Article  CAS  Google Scholar 

  24. S. Aoki, K. Fujiwara, T. Sugo, K. Suzuki, Antimicrobial fabric adsorbed iodine produced by radiation-induced graft polymerization. Radiat. Phys. Chem. 84, 242–245 (2013)

    Article  CAS  Google Scholar 

  25. A.I. Shawky, M.J. Megat Mohd Noor, M.M. Nasef, M. Khayet, M. Nallappan, Z. Ujang, Enhancing antimicrobial properties of poly(vinylidene fluoride)/hexafluoropropylene copolymer membrane by electron beam induced grafting of N-vinyl-2-pyrrolidone and iodine immobilization. RSC Adv. 6, 42461–42473 (2016)

    Article  CAS  Google Scholar 

  26. F.N. Büchi, B. Gupta, O. Haas, G.G. Scherer, Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells. Electrochim. Acta 40, 345–353 (1995)

    Article  Google Scholar 

  27. S. Hietala, S. Holmberg, M. Karjalainen, J. Näsman, M. Paronen, R. Serimaa, F. Sundholm, S. Vahvaselkä, Structural investigation of radiation grafted and sulfonated poly(vinylidene fluoride), PVDF, membranes. J. Mater. Chem. 7, 721–726 (1997)

    Article  CAS  Google Scholar 

  28. M. Nasef, Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog. Polym. Sci. 29, 499–561 (2004)

    Article  CAS  Google Scholar 

  29. J. Chen, M. Asano, T. Yamaki, M. Yoshida, Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films. J. Membr. Sci. 269, 194–204 (2006)

    Article  CAS  Google Scholar 

  30. R. Kakuchi, Multicomponent reactions in polymer synthesis. Angew. Chem. Int. Ed. 53, 46–48 (2014)

    Article  CAS  Google Scholar 

  31. R. Kakuchi, The dawn of polymer chemistry based on multicomponent reactions. Polym. J. 51, 945–953 (2019)

    Article  CAS  Google Scholar 

  32. P. Theato, Multi-component and Sequential Reactions in Polymer Synthesis, vol. 269 (Springer, New York, 2015)

    Book  Google Scholar 

  33. Y. Zhao, H. Wu, Z. Wang, Y. Wei, Z. Wang, L.J.S.C.C. Tao, Training the old dog new tricks: the applications of the Biginelli reaction in polymer chemistry. Sci. China Chem. 59, 1541–1547 (2016)

    Article  CAS  Google Scholar 

  34. R. Afshari, A. Shaabani, Materials functionalization with multicomponent reactions: state of the art. ACS Combi. Sci. 20, 499–528 (2018)

    Article  CAS  Google Scholar 

  35. J.G. Rudick, Innovative macromolecular syntheses via isocyanide multicomponent reactions. J. Polym. Sci. Part A 51, 3985–3991 (2013)

    Article  CAS  Google Scholar 

  36. H. Wu, Y. Gou, J. Wang, L. Tao, Multicomponent reactions for surface modification. Macromol. Rapid Commun. 39, e1800064 (2018)

    Article  Google Scholar 

  37. B. Yang, Y. Zhao, Y. Wei, C. Fu, L. Tao, The Ugi reaction in polymer chemistry: syntheses applications and perspectives. Polym. Chem. 6, 8233–8239 (2015)

    Article  CAS  Google Scholar 

  38. J. Zhu, H. Bienaymé (eds.), Multicomponent Reactions (Wiley-VCH Verlag GmbH & Co. KGaA, New York, 2005)

    Google Scholar 

  39. R.W. Armstrong, A.P. Combs, P.A. Tempest, S.D. Brown, T.A. Keating, Multiple-component condensation strategies for combinatorial library synthesis. Acc. Chem. Res. 29, 123–131 (1996)

    Article  CAS  Google Scholar 

  40. A. Dömling, Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev. 106, 17–89 (2006)

    Article  Google Scholar 

  41. A. Dömling, W. Wang, K. Wang, Chemistry and biology of multicomponent reactions. Chem. Rev. 112, 3083–3135 (2012)

    Article  Google Scholar 

  42. B.H. Rotstein, S. Zaretsky, V. Rai, A.K. Yudin, Small heterocycles in multicomponent reactions. Chem. Rev. 114, 8323–8359 (2014)

    Article  CAS  Google Scholar 

  43. B.B. Touré, D.G. Hall, Natural product synthesis using multicomponent reaction strategies. Chem. Rev. 109, 4439–4486 (2009)

    Article  Google Scholar 

  44. L.A. Wessjohann, D.G. Rivera, O.E. Vercillo, Multiple Multicomponent Macrocyclizations (MiBs): a strategic development toward macrocycle diversity. Chem. Rev. 109, 796–814 (2009)

    Article  CAS  Google Scholar 

  45. O. Kreye, T. Tóth, M.A.R. Meier, Introducing multicomponent reactions to polymer science: passerini reactions of renewable monomers. J. Am. Chem. Soc. 133, 1790–1792 (2011)

    Article  CAS  Google Scholar 

  46. P. Stiernet, P. Lecomte, J. De Winter, A. Debuigne, Ugi three-component polymerization toward Poly(α-amino amide)s. ACS Macro Lett. 8, 427–434 (2019)

    Article  CAS  Google Scholar 

  47. O. Kreye, O. Türünç, A. Sehlinger, J. Rackwitz, M.A.R. Meier, Structurally diverse polyamides obtained from monomers derived via the Ugi multicomponent reaction. Chem. Eur. J 18, 5767–5776 (2012)

    Article  CAS  Google Scholar 

  48. B. Yang, Y. Zhao, C. Fu, C. Zhu, Y. Zhang, S. Wang, Y. Wei, L. Tao, Introducing the Ugi reaction into polymer chemistry as a green click reaction to prepare middle-functional block copolymers. Polym. Chem. (2014). https://doi.org/10.1039/C1034PY00001C

    Article  Google Scholar 

  49. X.-X. Deng, L. Li, Z.-L. Li, A. Lv, F.-S. Du, Z.-C. Li, Sequence regulated Poly(ester-amide)s based on passerini reaction. ACS Macro Lett. 1, 1300–1303 (2012)

    Article  CAS  Google Scholar 

  50. S.C. Solleder, M.A.R. Meier, Sequence control in polymer chemistry through the Passerini three-component reaction. Angew. Chem. Int. Ed. 53, 711–714 (2014)

    Article  CAS  Google Scholar 

  51. L. Li, X.-W. Kan, X.-X. Deng, C.-C. Song, F.-S. Du, Z.-C. Li, Simultaneous dual end-functionalization of peg via the passerini three-component reaction for the synthesis of ABC miktoarm terpolymers. J. Polym. Sci. Part A 51, 865–873 (2013)

    Article  CAS  Google Scholar 

  52. J.-A. Jee, L.A. Spagnuolo, J.G. Rudick, Convergent synthesis of dendrimers via the Passerini three-component reaction. Org. Lett. 14, 3292–3295 (2012)

    Article  CAS  Google Scholar 

  53. X.-X. Deng, Y. Cui, F.-S. Du, Z. Li, Functional highly branched polymers from Multicomponent Polymerization (MCP) based on the ABC type Passerini reaction. Polym. Chem. 5(10), 3316–3320 (2014)

    Article  CAS  Google Scholar 

  54. Y.-Z. Wang, X.-X. Deng, L. Li, Z.-L. Li, F.-S. Du, Z.-C. Li, One-pot synthesis of polyamides with various functional side groups via Passerini reaction. Polym. Chem. 4, 444–448 (2013)

    Article  CAS  Google Scholar 

  55. D. Paprocki, D. Koszelewski, P. Walde, R. Ostaszewski, Efficient Passerini reactions in an aqueous vesicle system. RSC Adv. 5, 102828–102835 (2015)

    Article  CAS  Google Scholar 

  56. H. Wu, L. Yang, L. Tao, Polymer synthesis by mimicking nature’s strategy: the combination of ultra-fast RAFT and the Biginelli reaction. Polym. Chem. 8, 5679–5687 (2017)

    Article  CAS  Google Scholar 

  57. C. Zhu, B. Yang, Y. Zhao, C. Fu, L. Tao, Y. Wei, A new insight into the Biginelli reaction: the dawn of multicomponent click chemistry? Polym. Chem. 4, 5395–5400 (2013)

    Article  CAS  Google Scholar 

  58. F. Xu, J.J. Wang, Y.P. Tian, New procedure for one-pot synthesis of 3,4-Dihydropyrimidin-2(1H)-ones by Biginelli reaction. Synth. Commun. 38, 1299–1310 (2008)

    Article  CAS  Google Scholar 

  59. R. Kakuchi, P. Theato, Efficient multicomponent postpolymerization modification based on Kabachnik-fields reaction. ACS Macro Lett. 3, 329–332 (2014)

    Article  CAS  Google Scholar 

  60. F. Moldenhauer, R. Kakuchi, P. Theato, Synthesis of polymers via Kabachnik-fields polycondensation. ACS Macro Lett. 5, 10–13 (2016)

    Article  CAS  Google Scholar 

  61. Y. Zhang, Y. Zhao, B. Yang, C. Zhu, Y. Wei, L. Tao, ‘One pot’ synthesis of well-defined poly(aminophosphonate)s: time for the Kabachnik-Fields reaction on the stage of polymer chemistry. Polym. Chem. 5, 1857 (2014)

    Article  CAS  Google Scholar 

  62. R.A. Cherkasov, V.I. Galkin, The Kabachnik-fields reaction: synthetic potential and the problem of the mechanism. Russ. Chem. Rev. 67, 857–882 (1998)

    Article  Google Scholar 

  63. M. Omichi, S. Yamashita, Y. Okura, R. Ikutomo, Y. Ueki, N. Seko, R. Kakuchi, Surface engineering of fluoropolymer films via the attachment of crown ether derivatives based on the combination of radiation-induced graft polymerization and the Kabachnik-fields reaction. Polymers 11, 1337 (2019)

    Article  Google Scholar 

  64. R. Kakuchi, S. Yoshida, T. Sasaki, S. Kanoh, K. Maeda, Multi-component post-polymerization modification reactions of polymers featuring lignin-model compounds. Polym. Chem. 9, 2109–2115 (2018)

    Article  CAS  Google Scholar 

  65. T. Hamada, S. Yamashita, M. Omichi, K. Yoshimura, Y. Ueki, N. Seko, R. Kakuchi, Multicomponent-reaction-ready biomass-sourced organic hybrids fabricated via the surface immobilization of polymers with lignin-based compounds. ACS Sustain. Chem. Eng. (2019). https://doi.org/10.1021/acssuschemeng.1028b06812

    Article  Google Scholar 

  66. R. Kakuchi, R. Tsuji, K. Fukasawa, S. Yamashita, M. Omichi, N. Seko, Polymers of lignin-sourced components as a facile chemical integrant for the Passerini three-component reaction. Polym. J. 53, 523–531 (2021)

    Article  CAS  Google Scholar 

  67. B.J.D. Barba, C.G.V. Causapin, P.J.E. Cabalar, J.A.A. Luna, N. Seko, M. Omichi, R. Kakuchi, J.F. Madrid, Pineapple fiber hybrids prepared by the fusion of radiation-induced graft polymerization and Kabachnik-Fields three-component reaction (RIGP-KF3CR). J. Nat. Fibers, 1–13 (2022)

  68. R. Takahashi, R. Kakuchi, Rational optimization of the petasis three-component reaction as a feasible elementary reaction in polymer chemistry. Macromol. Chem Phys. 222, 2000347 (2021)

    Article  CAS  Google Scholar 

  69. K. Matsubara, L.-C. Chou, H. Amii, R. Kakuchi, Fast-track computational access to reaction mechanisms provides comprehensive insights into aminolysis postpolymerization modification reactions. Mol. Syst. Des. Eng. (2022). https://doi.org/10.1039/d2me00083k

    Article  Google Scholar 

  70. R. Kakuchi, K. Fukasawa, M. Kikuchi, A. Narumi, S. Kawaguchi, Y. Li, H. Kim, H. Amii, Computer-aided design of postpolymerization modification reaction based on aminolysis of α, α-difluoroacetate esters. Macromolecules 54, 364–372 (2021)

    Article  CAS  Google Scholar 

  71. R. Kakuchi, K. Matsubara, K. Fukasawa, H. Amii, Unveiling α-etherification effects on the aminolysis of α, α-difluoroacetate enables the aminolysis post-polymerization modification of α, α-Difluoro-α-(aryloxy)acetate-containing polymers. Macromolecules 54, 6204–6213 (2021)

    Article  CAS  Google Scholar 

  72. R. Kakuchi, K. Fukasawa, L.-C. Chou, H. Kim, H. Amii, Fundamental insights into aminolysis postpolymerization modification reaction of polymers featuring α, α-difluoroacetate esters. Polymer 230, 124058 (2021)

    Article  CAS  Google Scholar 

  73. D.T. Ahneman, J.G. Estrada, S. Lin, S.D. Dreher, A.G. Doyle, Predicting reaction performance in C–N cross-coupling using machine learning. Science 360, 186–190 (2018)

    Article  CAS  Google Scholar 

  74. J.F. Madrid, Y. Ueki, L.V. Abad, T. Yamanobe, N. Seko, RAFT-mediated graft polymerization of glycidyl methacrylate in emulsion from polyethylene/polypropylene initiated with γ-radiation. J. Appl. Polym. Sci. 134, 45270 (2017)

    Article  Google Scholar 

  75. B.J.D. Barba, D.P. Peñaloza, N. Seko, J.F. Madrid, RAFT-mediated radiation grafting on natural fibers in aqueous emulsion. Mater. Proc. 7, 4 (2021)

    Google Scholar 

  76. B.J.D. Barba, P.N.L. Heruela, P.J.E. Cabalar, J.A.A. Luna, A.C.C. Yago, J.F. Madrid, Nanografting of polymer brushes on gold substrate by RAFT-RIGP. Mater. Proc. 7, 5 (2021)

    Google Scholar 

  77. M. Barsbay, O. Güven, M.H. Stenzel, T.P. Davis, C. Barner-Kowollik, L. Barner, Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40, 7140–7147 (2007)

    Article  CAS  Google Scholar 

  78. M. Barsbay, O. Güven, T.P. Davis, C. Barner-Kowollik, L. Barner, RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via γ-radiation. Polymer 50, 973–982 (2009)

    Article  CAS  Google Scholar 

  79. G. Çelik, M. Barsbay, O. Güven, Towards new proton exchange membrane materials with enhanced performance via RAFT polymerization. Polym. Chem. 7, 701–714 (2016)

    Article  Google Scholar 

  80. J.F. Madrid, M. Barsbay, L. Abad, O. Güven, Grafting of N, N-dimethylaminoethyl methacrylate from PE/PP nonwoven fabric via radiation-induced RAFT polymerization and quaternization of the grafts. Radiat. Phys. Chem. 124, 145–154 (2016)

    Article  CAS  Google Scholar 

  81. M. Barsbay, O. Güven, Surface modification of cellulose via conventional and controlled radiation-induced grafting. Radiat. Phys. Chem. 160, 1–8 (2019)

    Article  CAS  Google Scholar 

  82. Y. Ueki, N. Seko, Y. Maekawa, Machine learning approach for prediction of the grafting yield in radiation-induced graft polymerization. Appl. Mater. Today 25, 101158 (2021)

    Article  Google Scholar 

  83. G.T. Rekso, Irradiation grafting of hydrophilic monomer onto chitin. AIP Conf. Proc. 2349, 020013 (2021)

    Article  CAS  Google Scholar 

  84. S. Selambakkannu, N.A.F. Othman, K.A. Bakar, Z.A. Karim, Adsorption studies of packed bed column for the removal of dyes using amine functionalized radiation induced grafted fiber. SN Appl. Sci. 1, 175 (2019)

    Article  CAS  Google Scholar 

  85. J.F. Madrid, G.M. Nuesca, L.V. Abad, Gamma radiation-induced grafting of glycidyl methacrylate (GMA) onto water hyacinth fibers. Radiat. Phys. Chem. 85, 182–188 (2013)

    Article  CAS  Google Scholar 

  86. J.F. Madrid, Y. Ueki, N. Seko, Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting. Radiat. Phys. Chem. 90, 104–110 (2013)

    Article  CAS  Google Scholar 

  87. J.F. Madrid, L.V. Abad, Modification of microcrystalline cellulose by gamma radiation-induced grafting. Radiat. Phys. Chem. 115, 143–147 (2015)

    Article  CAS  Google Scholar 

  88. J. Pomicpic, G.C. Dancel, P.J. Cabalar, J. Madrid, Methylene blue removal by poly(acrylic acid)-grafted pineapple leaf fiber/polyester nonwoven fabric adsorbent and its comparison with removal by gamma or electron beam irradiation. Radiat. Phys. Chem. 172, 108737 (2020)

    Article  CAS  Google Scholar 

  89. J.F. Madrid, P.J.E. Cabalar, L.V. Abad, Radiation-induced graft polymerization of acrylic acid and glycidyl methacrylate onto abaca/polyester nonwoven fabric. J. Nat. Fibers 15, 625–638 (2018)

    Article  CAS  Google Scholar 

  90. J. Sharif, S.F. Mohamad, N.A. Fatimah Othman, N.A. Bakaruddin, H.N. Osman, O. Güven, Graft copolymerization of glycidyl methacrylate onto delignified kenaf fibers through pre-irradiation technique. Radiat. Phys. Chem. 91, 125–131 (2013)

    Article  CAS  Google Scholar 

  91. S. Selambakkannu, N.A.F. Othman, K.A. Bakar, S.A. Shukor, Z.A. Karim, A kinetic and mechanistic study of adsorptive removal of metal ions by imidazole-functionalized polymer graft banana fiber. Radiat. Phys. Chem. 153, 58–69 (2018)

    Article  CAS  Google Scholar 

  92. N. Seko, L.T. Bang, M. Tamada, Syntheses of amine-type adsorbents with emulsion graft polymerization of glycidyl methacrylate. Nucl. Instrum. Methods Phys. Res. B 265, 146–149 (2007)

    Article  CAS  Google Scholar 

  93. Y. Wada, M. Tamada, N. Seko, H. Mitomo, Emulsion grafting of vinyl acetate onto preirradiated poly(3-hydroxybutyrate) film. J. Appl. Polym. Sci. 107, 2289–2294 (2008)

    Article  CAS  Google Scholar 

  94. N. Seko, N.T.Y. Ninh, M. Tamada, Emulsion grafting of glycidyl methacrylate onto polyethylene fiber. Radiat. Phys. Chem. 79, 22–26 (2010)

    Article  CAS  Google Scholar 

  95. D. Paprocki, A. Madej, D. Koszelewski, A. Brodzka, R. Ostaszewski, Multicomponent reactions accelerated by aqueous micelles. Front. Chem. 6, 502 (2018)

    Article  CAS  Google Scholar 

  96. S. Sobhani, A. Vafaee, Micellar solution of Sodium Dodecyl Sulfate (SDS) catalyzes Kabacknik-fields reaction in aqueous media. Synthesis 2009, 1909–1915 (2009)

    Article  Google Scholar 

  97. J.F. Allochio Filho, R.G. Fiorot, V. Lacerda, R.B. dos Santos, G. Vanini, W. Romão, S.J. Greco, First synthesis of aminonaphthoquinones derived from lawsone in a colloidal dispersion system created by a Brønsted acid-surfactant-combined catalyst in water: an environmentally friendly protocol. Colloids Interface Sci. Commun. 4, 14–18 (2015)

    Article  CAS  Google Scholar 

  98. J.-M. Yang, C.-N. Jiang, H. Dong, D. Fang, Synthesis of 1-carbamatoalkyl-2-naphthols in Tween® 20 aqueous micelles. J. Chem. Res. 37, 279–281 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R. K. gratefully acknowledges the Leading Initiative for Excellent Young Researchers (LEADER) and Grant-in-Aid for Scientific Research (C) (Grant number: 19K05578) for financial support. R. K. also acknowledge the S-Membrane Project and the F-Materials Project at Gunma University for the financial support. M. O. and J. M. gratefully acknowledge the JSPS-DOST Joint Research Program (Grant number for the Japan side: JPJSBP120208601, that for the Philippine side: 08575) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryohei Kakuchi or Noriaki Seko.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakuchi, R., Matsubara, K., Madrid, J.F. et al. A-la-carte surface functionalization of organic materials via the combination of radiation-induced graft polymerization and multi-component reactions. MRS Communications 12, 552–564 (2022). https://doi.org/10.1557/s43579-022-00255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00255-9

Keywords

Navigation