Skip to main content
Log in

Novel synthesis of ZnO using 2D clinostat with enhanced photocatalytic performance

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The 2D clinostat provides an efficient and straightforward ground-based facility to simulate near functional weightlessness. Here, a study of ZnO crystal formation on a 2D clinostat utilizing a wet chemical technique at ambient temperature is reported for the first time. It was found out that the ZnO growth under clinostat conditions exhibits higher photocatalytic activity compared to its counterpart growth under normal conditions. The clinostat environment appears to reduce sedimentation of particles in colloidal suspensions, which is greatly affected by gravity, leading to uneven growth in various systems before the emergence of crystal defects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. S.H. Ferreira, M. Morais, D. Nunes, M.J. Oliveira, A. Rovisco, A. Pimentel, H. Aguas, E. Fortunato, R. Martins, High UV and sunlight photocatalytic performance of porous ZnO nanostructures synthesized by a facile and fast microwave hydrothermal method. Materials 14, 2385 (2021)

    Article  CAS  Google Scholar 

  2. R.S. Devan, R.A. Patil, J.-H. Lin, Y.-R. Ma, One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 22, 3326 (2012)

    Article  CAS  Google Scholar 

  3. R. Chandran, A. Mallik, Facile, seedless and surfactant-free synthesis of ZnO nanostructures by wet chemical bath method and their characterization. Appl Nanosci. 8, 1823 (2018)

    Article  CAS  Google Scholar 

  4. A.V. Nikam, B.L.V. Prasad, A.A. Kulkarni, Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm 20, 5091 (2018)

    Article  CAS  Google Scholar 

  5. N. Murakami, K. Arafune, T. Koyama, Y. Momose, T. Ozawa, Y. Okano, S. Dost, L.H. Dao, M. Kumagawa, Y. Hayakawa, Effect of gravity on InGaSb crystal growth. Microgravity Sci Technol. 16, 79 (2005)

    Article  CAS  Google Scholar 

  6. T. Kimura, K. Arafune, K. Balakrishnan, T. Ozawa, Y. Okano, N. Murakami, H. Adachi, Y. Hayakawa, M. Kumagawa, Numerical analysis of the dissolution process of GaSb into InSb melt under different gravity conditions. J. Cryst. Growth. 247, 291 (2003)

    Article  CAS  Google Scholar 

  7. J.-F. Cribier, S. Ohara, T. Fukui, Preparation of ZnO based particles in a microgravity environment. J Mater Sci Lett. 22, 37 (2003)

    Article  CAS  Google Scholar 

  8. H. Wang, X. Li, L. Krause, M. Görög, O. Schüler, J. Hauslage, R. Hemmersbach, S. Kircher, H. Lasok, T. Haser, K. Rapp, J. Schmidt, X. Yu, T. Pasternak, D. Aubry-Hivet, O. Tietz, A. Dovzhenko, K. Palme, F. Ditengou, 2-D clinostat for simulated microgravity experiments with Arabidopsis seedlings. Microgravity Sci Technol. 28, 59 (2016)

    Article  Google Scholar 

  9. P. Eiermann, S. Kopp, J. Hauslage, R. Hemmersbach, R. Gerzer, K. Ivanova, Adaptation of a 2-D clinostat for simulated microgravity experiments with adherent cells. Microgravity Sci Technol. 28, 179 (2016)

    Article  Google Scholar 

  10. S.M. Kim, H. Kim, D. Yang, J. Park, R. Park, S. Namkoong, J.I. Lee, I. Choi, H.-S. Kim, H. Kim, J. Park, An experimental and theoretical approach to optimize a three-dimensional clinostat for life science experiments. Microgravity Sci Technol. 29, 97 (2017)

    Article  CAS  Google Scholar 

  11. M. Kokotov, G. Hodes, Reliable chemical bath deposition of ZnO films with controllable morphology from ethanolamine-based solutions using KMnO4 substrate activation. J. Mater. Chem. 19, 3847 (2009)

    Article  CAS  Google Scholar 

  12. S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 4, 1013 (2011)

    Article  CAS  Google Scholar 

  13. N. Rathore, D.V.S. Rao, S.K. Sarkar, Growth of a polarity controlled ZnO nanorod array on a glass/FTO substrate by chemical bath deposition. RSC Adv. 5, 28251 (2015)

    Article  CAS  Google Scholar 

  14. G. Clément, International roadmap for artificial gravity research. Npj Microgravity 3, 29 (2017)

    Article  Google Scholar 

  15. T. Carlberg, Prog. Cryst. Growth Charact. Mater. 52, 213 (2006)

    Article  CAS  Google Scholar 

  16. I. Dietlein, T. Doi, H. Haubold, J. Hauslage, R. Hemmersbach, T. Hoson, S. Lammens, Y. Li, M. Long, J.J.W.A. Van-Loon, A. Niu, H. Takahashi, M. Ochiai, A. Osman, H. Steffens, The Teacher’s Guide to Plant Experiments in Microgravity (United Nations Office, New York, 2013)

    Google Scholar 

  17. J. Hauslage, V. Cevik, R. Hemmersbach, Pyrocystis Noctiluca represents an excellent bioassay for shear forces induced in ground-based microgravity simulators (clinostat and random positioning machine). npj Microgravity 3, 1 (2017)

    Article  Google Scholar 

  18. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123 (2014)

    Article  Google Scholar 

  19. B. Panigrahy, D. Bahadur, p-type phosphorus doped ZnO nanostructures: an electrical, optical, and magnetic properties study. RSC Adv. 2, 6222 (2012)

    Article  CAS  Google Scholar 

  20. H.-C. Wang, C.-H. Liao, Y.-L. Chueh, C.-C. Lai, P.-C. Chou, S.-Y. Ting, Crystallinity improvement of ZnO thin film by hierarchical thermal annealing. Opt. Mater. Express. 3, 295 (2013)

    Article  CAS  Google Scholar 

  21. T.M.K. Thandavan, S.M.A. Gani, C.S. Wong, R.M. Nor, Enhanced photoluminescence and Raman properties of Al-doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass. PLoS ONE 10, 1 (2015)

    Article  Google Scholar 

  22. R. Kumari, A. Sahai, N. Goswami, Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles. Prog. Nat. Sci. 25, 300 (2015)

    Article  CAS  Google Scholar 

  23. M. Bitenc, P. Podbrscek, Z.C. Orel, M.A. Cleveland, J.A. Paramo, R.M. Peters, Y.M. Strzhemechny, Correlation between morphology and defect luminescence in precipitated ZnO nanorod powders. Cryst. Growth Des. 9, 997 (2009)

    Article  CAS  Google Scholar 

  24. M. Li, J. Li, L. Yu, Y. Zhang, Y. Dai, R. Chen, W. Huang, Trap-filling of ZnO buffer layer for improved efficiencies of organic solar cells. Front. Chem. 8, 1 (2020)

    Article  Google Scholar 

  25. R. Saravanan, J. Aviles, F. Gracia, E. Mosquera, V.K. Gupta, Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO2/CS (Chitosan) nanocomposites. Int. J. Biol. Macromol. 109, 1239 (2018)

    Article  CAS  Google Scholar 

  26. R. Herranz, R. Anken, J. Boonstra, M. Braun, P.C.M. Christianen, M.D. Geest, J. Hauslage, R. Hilbig, R.J.A. Hill, M. Lebert, F.J. Medina, N. Vagt, O. Ullrich, J.J.W.A. Van-Loon, Ground-based facilities for simulation of microgravity: Organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1 (2016)

    Article  Google Scholar 

  27. J. Russo, A.C. Maggs, D. Bonn, H. Tanaka, The interplay of sedimentation and crystallization in hard-sphere suspensions. Soft Matter 9, 7369 (2013)

    Article  CAS  Google Scholar 

  28. E.H. Snell, J.R. Helliwell, Macromolecular crystallization in microgravity. Rep. Prog. Phys. 68, 799 (2005)

    Article  CAS  Google Scholar 

  29. C.E. Kundrot, R.A. Judge, M.L. Pusey, E.H. Snell, Microgravity and macromolecular crystallography. Cryst. Growth Des. 1, 87 (2001)

    Article  CAS  Google Scholar 

  30. H. Ahari, R.L. Bedard, C.L. Bowes, N. Coombs, O. Dag, T. Jiang, G.A. Ozin, S. Petrov, I. Sokolov, A. Verma, G. Vovk, D. Young, Effect of microgravity on the crystallization of a self-assembling layered material. Nature 388, 857 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge this work was financially supported by a Fundamental Research Grant Scheme (FRGS) (FP064-2014A), SATU Grant (RU022F-2014) and Postgraduate Research Fund (PG228-2015A). Special thanks to United Nations Human Space Technology Initiative (UN-HSTI): Zero-Gravity Instrument Project (ZGIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boon Hoong Ong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1785 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, M.R.Y., Ong, B.H., Hashim, M.H. et al. Novel synthesis of ZnO using 2D clinostat with enhanced photocatalytic performance. MRS Communications 12, 83–89 (2022). https://doi.org/10.1557/s43579-021-00144-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00144-7

Keywords

Navigation