Skip to main content
Log in

Colloidal Material Box: In-situ Observations of Colloidal Self-Assembly and Liquid Crystal Phase Transitions in Microgravity

  • ORIGINAL ARTICLE
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

To study the self-assembly behavior of colloidal spheres in the solid/liquid interface and elucidate the mechanism of liquid crystal phase transition under microgravity, a Colloidal Material Box (CMB) was designed which consists of three modules: (i) colloidal evaporation experimental module, made up of a sample management unit, an injection management unit and an optical observation unit; (ii) liquid crystal phase transition experimental module, including a sample management unit and an optical observation unit; (iii) electronic control module. The following two experimental plans will be performed inside the CMB aboard the SJ-10 satellite in space. (i) Self-assembly of colloidal spheres (with and without Au shell) induced by droplet evaporation, allowing observation of the dynamic process of the colloidal spheres within the droplet and the change of the droplet outer profile during evaporation; (ii) Phase behavior of Mg2Al LDHs suspensions in microgravity. The experimental results will be the first experimental observations of depositing ordered colloidal crystals and their self-assembly behavior under microgravity, and will illustrate the influence of gravity on liquid crystal phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ansari, R.R., Hovenac, E.A., Sankaran, S., Koudelka, J.M., Weitz, D.A., Cipelletti, L., Segre, P.N.: Physics of colloids in space experiment. In: Space Technology and Applications International Forum-1999. AIP Publishing, vol. 1, pp 108–113 (1999)

  • Baulin, V.A.: Self-assembled aggregates in the gravitational field: growth and nematic order. J Chem Phys 119(5), 2874–2885 (2003)

    Article  Google Scholar 

  • Cao, H., Lan, D., Wang, Y., Volinsky, A.A., Duan, L., Jiang, H.: Fracture of colloidal single-crystal films fabricated by controlled vertical drying deposition. Phys. Rev. E 82(3), 031602 (2010)

    Article  Google Scholar 

  • Cheng, Z., Zhu, J., Russel, W.B., Meyer, W.V., Chaikin, P.M.: Colloidal hard-sphere crystallization kinetics in microgravity and normal gravity. Appl. Opt. 40(24), 4146–4151 (2001)

    Article  Google Scholar 

  • Dag, Ö., Ahari, H., Coombs, N., Jiang, T., Aroca-Ouellette, P.P., Petrov, S., Sokolov, I., Verma, A., Vovk, G., Young, D.: Does microgravity influence self-assembly? Adv. Mater. 9(15), 1133–1149 (1997)

    Article  Google Scholar 

  • Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997)

    Article  Google Scholar 

  • Frenkel, D.: Onsager’s spherocylinders revisited. J. Phys. Chem. 91(19), 4912–4916 (1987)

    Article  Google Scholar 

  • Hampton, M.A., Nguyen, T.A., Nguyen, A.V., Xu, Z.P., Huang, L., Rudolph, V.: Influence of surface orientation on the organization of nanoparticles in drying nanofluid droplets. J. Colloid Interface Sci. 377(1), 456–462 (2012)

    Article  Google Scholar 

  • Hu, W.: Special issue: microgravity experiments on board the chinese recoverable satellites preface. Springer, New York (2008)

  • Hu, W., Zhao, J., Long, M., Zhang, X., Liu, Q., Hou, M., Kang, Q., Wang, Y., Xu, S., Kong, W.: Space program SJ-10 of microgravity research. Microgravity Sci. Technol. 26(3), 159–169 (2014)

    Article  Google Scholar 

  • Kuncicky, D.M., Velev, O.D.: Surface-guided templating of particle assemblies inside drying sessile droplets. Langmuir 24(4), 1371–1380 (2008)

    Article  Google Scholar 

  • Leferink Op Reinink, A.B.G.M., Van Den Pol, E., Byelov, D.V., Petukhov, A.V., Vroege, G.J.: Ageing in a system of polydisperse goethite boardlike particles showing rich phase behaviour. J. Phys-Condens Mat. 24, 46 (2012)

    Article  Google Scholar 

  • Leferink op Reinink, A.B.G.M., van den Pol, E., Petukhov, A.V., Vroege, G.J., Lekkerkerker, H.N.W.: Phase behaviour of lyotropic liquid crystals in external fields and confinement. Eur. Phys. J.-Spec. Top. 222(11), 3053–3069 (2013)

    Article  Google Scholar 

  • Li, C., Zhao, H., Ni, R.: China’s recoverable satellites and their onboard experiments. Microgravity Sci. Technol. 20(2), 61–65 (2008)

    Article  Google Scholar 

  • Lin, Z.: Evaporative self-assembly of ordered complex structures. World Scientific (2012)

  • Marín, Á.G., Gelderblom, H., Lohse, D., Snoeijer, J.H.: Order-to-disorder transition in ring-shaped colloidal stains. Phys. Rev. Lett. 107(8), 085502 (2011)

    Article  Google Scholar 

  • Murai, M., Okuzono, T., Yamamoto, M., Toyotama, A., Yamanaka, J.: Gravitational compression dynamics of charged colloidal crystals. J. Colloid Interface Sci. 370(1), 39–45 (2012)

    Article  Google Scholar 

  • Norris, D.J., Arlinghaus, E.G., Meng, L., Heiny, R., Scriven, L.: Opaline photonic crystals: how does self-assembly work? Adv. Mater. 16(16), 1393–1399 (2004)

    Article  Google Scholar 

  • Okubo, T., Tsuchida, A., Okuda, T., Fujitsuna, K., Ishikawa, M., Morita, T., Tada, T.: Kinetic analyses of colloidal crystallization in microgravity-aircraft experiments. Colloids Surf. A Physicochem. Eng. Asp. 153(1), 515–524 (1999)

    Article  Google Scholar 

  • Okubo, T., Tsuchida, A., Takahashi, S., Taguchi, K., Ishikawa, M.: Kinetics of colloidal alloy crystallization of binary mixtures of monodispersed polystyrene and/or colloidal silica spheres having different sizes and densities in microgravity using aircraft. Collied Polym. Sci. 278(3), 202–210 (2000)

    Article  Google Scholar 

  • Onsager, L.: The effects of shape on the interaction of colloidal particles. Ann. NY Acad. Sci. 51(4), 627–659 (1949)

    Article  Google Scholar 

  • Priestly, E.: Introduction to liquid crystals. Springer Science & Business Media (2012)

  • Pusey, P., Van Megen, W.: Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320(6060), 340–342 (1986)

    Article  Google Scholar 

  • Schöpe, H.J., Wette, P.: Seed-and wall-induced heterogeneous nucleation in charged colloidal model systems under microgravity. Phys. Rev. E 83(5), 051405 (2011)

    Article  Google Scholar 

  • Schall, P., Cohen, I., Weitz, D.A., Spaepen, F.: Visualization of dislocation dynamics in colloidal crystals. Science 305(5692), 1944–1948 (2004)

    Article  Google Scholar 

  • Van Blaaderen, A., Ruel, R., Wiltzius, P.: Template-directed colloidal crystallization. Nature 385(6614), 321–324 (1997)

    Article  Google Scholar 

  • Yin, Y., Lu, Y., Gates, B., Xia, Y.: Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J. Am. Chem. Soc. 123(36), 8718–8729 (2001)

    Article  Google Scholar 

  • Zheng, Z., Ni, R., Wang, F., Dijkstra, M., Wang, Y., Han, Y.: Structural signatures of dynamic heterogeneities in monolayers of colloidal ellipsoids. Nat. Commun. 5, 2014

Download references

Acknowledgments

Project is supported by National Natural Science Foundation of China (Grant Nos.11202209, 11472275) and Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences (A) (Grant Nos. XDA04020202, XDA04020406).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ding Lan or YuRen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lan, D., Sun, Z. et al. Colloidal Material Box: In-situ Observations of Colloidal Self-Assembly and Liquid Crystal Phase Transitions in Microgravity. Microgravity Sci. Technol. 28, 179–188 (2016). https://doi.org/10.1007/s12217-016-9497-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-016-9497-6

Keywords

Navigation