Skip to main content
Log in

A new method for the dynamic deformation characterization of thin-film stacked structures

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The dynamic deformation of thin-film stacked structures in the bond pad of microelectronic devices usually occurs when the contact load rapidly increases during the wire-bonding process. This work developed dynamic strain rate model for analyzing the dynamic response of thin-film stacked structures at varying loading rates. Dynamic strain rate tests were performed by maintaining the ratio of instantaneous load rate to load. The indentation stress–strain curves at different testing protocols were plotted. We found that the deformation decreased as the prescribed rate increased because of the rate-dependent characteristics of the thin Cu film.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

Documents for supporting the current research are available from the corresponding author on reasonable request.

References

  1. I. Qin, A. Shah, C. Huynh, M. Meyer, M. Mayer, Y. Zhou, Role of process parameters on bondability and pad damage indicators in copper ball bonding. Microelectron. Reliab. 51(1), 60 (2011)

    Article  CAS  Google Scholar 

  2. C.C. Meng, E.Y.W. Yik, in Forced-time controlled transient dynamic wire bonding simulation for wire bond process development, 2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC) (2015).

  3. C.C. Meng, M. Fink, L. Weiss, in Virtual prototyping methodology for assessment of the interaction between wire bond pad design and bond process parameters to enhance the robustness of copper wire bond interconnect. 2016 IEEE CPMT Symposium Japan (ICSJ) 16 (2016).

  4. U.S. Lindholm, L.M. Yeakley, High strain-rate testing: tension and compression. Exp. Mech. 8(1), 1 (1968)

    Article  Google Scholar 

  5. G. Subhash, G. Ravichandran, in Mechanical Testing and Evaluation, ed. by H. Kuhn, D. Medlin (ASM International, Materials Park, 2000), pp. 1114–1133

  6. S. Nemat-Nasser, in Mechanical Testing and Evaluation, ed. by H. Kuhn, D. Medlin (ASM International, Materials Park, 2000), pp. 427–428

  7. J. Chen, X. Shi, B.D. Beake, X. Guo, Z. Wang, Y. Zhang, X. Zhang, S.R. Goodes, An investigation into the dynamic indentation response of metallic materials. J. Mater. Sci. 51(18), 8310 (2016)

    Article  CAS  Google Scholar 

  8. C. Zehnder, J.-N. Peltzer, J.S.K.L. Gibson, S. Korte-Kerzel, High strain rate testing at the nano-scale: a proposed methodology for impact nanoindentation. Mater. Des. 151, 17 (2018)

    Article  CAS  Google Scholar 

  9. H. Somekawa, C.A. Schuh, High-strain-rate nanoindentation behavior of fine-grained magnesium alloys. J. Mater. Res. 27(9), 1295 (2012)

    Article  CAS  Google Scholar 

  10. J.M. Wheeler, Nanoindentation Under Dynamic Conditions (University of Cambridge, Cambridge, 2009). https://doi.org/10.17863/CAM.14247

  11. B. Merle, W.H. Higgins, G.M. Pharr, Extending the range of constant strain rate nanoindentation testing. J. Mater. Res. (2020). https://doi.org/10.1557/jmr.2019.408

    Article  Google Scholar 

  12. G. Guillonneau, M. Mieszala, J. Wehrs, J. Schwiedrzik, S. Grop, D. Frey, L. Philippe, J.-M. Breguet, J. Michler, J.M. Wheeler, Nanomechanical testing at high strain rates: new instrumentation for nanoindentation and microcompression. Mater. Des. 148, 39 (2018)

    Article  CAS  Google Scholar 

  13. B.N. Lucas, W.C. Oliver, Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30(3), 601 (1999)

    Article  Google Scholar 

  14. Y. Liu, J. Hay, H. Wang, X. Zhang, A new method for reliable determination of strain-rate sensitivity of low-dimensional metallic materials by using nanoindentation. Scr. Mater. 77, 5 (2014)

    Article  CAS  Google Scholar 

  15. V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, M. Göken, Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26(11), 1421 (2011)

    Article  CAS  Google Scholar 

  16. P. Feldner, B. Merle, M. Göken, Determination of the strain-rate sensitivity of ultrafine-grained materials by spherical nanoindentation. J. Mater. Res. 32(8), 1466 (2017)

    Article  CAS  Google Scholar 

  17. N. Randall, C. Julia-Schmutz, J. Soro, J. von Stebut, G. Zacharie, Novel nanoindentation method for characterising multiphase materials. Thin Solid Films 308–309(1–4), 297 (1997)

    Article  Google Scholar 

  18. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992)

    Article  CAS  Google Scholar 

  19. E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, J.L. Hay, On the measurement of stress–strain curves by spherical indentation. Mater. Res. Soc. Symp. 649, Q3.4.1 (2001)

    Google Scholar 

  20. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004)

    Article  CAS  Google Scholar 

  21. A. Yeo, M. Liu, K. Zhou, Indentation damage evaluation on metal-coated thin-films stacked structure. J. Mater. Res. 30(20), 3071 (2015)

    Article  CAS  Google Scholar 

  22. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  23. A.C. Fischer-Cripps, Contact mechanics, in Nanoindentation. (Springer, New York, 2011), pp. 1–19

    Chapter  Google Scholar 

  24. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951)

  25. A.C. Fischer-Cripps, A. Bendeli, T.J. Bell, J.S. Field, A.K. Jamting, Methods of correction for analysis of depth-sensing indentation test data for spherical indenters. J. Mater. Res. 16(8), 2244 (2001)

    Article  CAS  Google Scholar 

  26. B.R. Donohue, A. Ambrus, S.R. Kalidindi, Critical evaluation of the indentation data analyses methods for the extraction of isotropic uniaxial mechanical properties using finite element models. Acta Mater. 60(9), 3943 (2012)

    Article  CAS  Google Scholar 

  27. J.S. Field, M.V. Swain, A simple predictive model for spherical indentation. J. Mater. Res. 8(2), 297 (1993)

    Article  CAS  Google Scholar 

  28. S. Pathak, S.R. Kalidindi, Spherical nanoindentation stress–strain curves. Mater. Sci. Eng. R 91, 1 (2015)

    Article  Google Scholar 

  29. J.L. Hay, G.M. Pharr, Instrumented indentation testing, in Mechanical Testing and Evaluation. ed. by H. Kuhn, D. Medlin (ASM International, Materials Park, 2000), pp. 232–243

    Google Scholar 

  30. Instrumented Indentation Testing (IIT). Available at: https://wiki.anton-paar.com/sg-en/instrumented-indentation-testing-iit/. Accessed August 2021

Download references

Acknowledgments

This work was supported by Economic Development Board of Singapore and Infineon Technologies Asia Pacific Pte. Ltd through the Industrial Postgraduate Program, Nanyang Technological University, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zhou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest influencing the work in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Yeo, A., Che, F. et al. A new method for the dynamic deformation characterization of thin-film stacked structures. MRS Communications 11, 917–923 (2021). https://doi.org/10.1557/s43579-021-00115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00115-y

Keywords

Navigation