Skip to main content
Log in

Glass transition and crystallization of Ce68Al10Cu20Co2 bulk metallic glass studied by Flash DSC

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, glass transition and crystallization of Ce68Al10Cu20Co2 bulk metallic glass at heating rates ranging from 0.083 to 14,000 K/s, covering six orders of magnitude, are investigated. For the glass transition, two linear regions with different apparent activation energies (Ea,g) are distinguished by a critical heating rate of 2000 K/s: Ea,g decreases from 208.7 to 67.3 kJ/mol with the increase of heating rate. During the crystallization, the nucleation rate and crystal growth rate between Tg and Tm are calculated. According to their dependence on temperature, the contact angle for the nucleation of Ce crystals is estimated at 11–14 degrees. For the crystal growth, a maximum crystal growth rate of 0.03 m/s is found at 0.97 Tm. Moreover, the breakdown of the Stokes–Einstein equation in the deeply undercooled melt is observed, where the diffusivity is related to viscosity by ∝ η−0.865.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. W.K. Jun, R.H. Willens, P. Duwez, Non-crystalline structure in solidified gold-silicon alloys. Nature 187(4740), 869 (1960)

    Article  Google Scholar 

  2. H. Assadi, J. Schroers, Crystal nucleation in deeply undercooled melts of bulk metallic glass forming systems. Acta Mater. 50(1), 89 (2002)

    Article  CAS  Google Scholar 

  3. M.D. Ediger, P. Harrowell, L. Yu, Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J. Chem. Phys. 128(3), 034709 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. J.W.P. Schmelzer, A.S. Abyzov, V.M. Fokin, C. Schick, E.D. Zanotto, Crystallization in glass-forming liquids: effects of decoupling of diffusion and viscosity on crystal growth. J. Non-Cryst. Solids 429, 45 (2015)

    Article  CAS  Google Scholar 

  5. H. Xiao, L. Zhang, J. Yi, S. Li, B. Zhao, Q. Zhai, Y. Gao, Exploration of crystal growth behavior in Au-based metallic glass by nanocalorimetry. Intermetallics 143, 107494 (2022)

    Article  CAS  Google Scholar 

  6. L. Zhang, H. Xiao, S. Li, L. Xu, B. Zhao, Q. Zhai, Y. Gao, Revealing the crystallization kinetics and phase transitions in Mg65Zn30Ca5 metallic glass by nanocalorimetry. J. Alloys Compd. 899, 163353 (2022)

    Article  CAS  Google Scholar 

  7. J. Pries, S. Wei, M. Wuttig, P. Lucas, Switching between crystallization from the glassy and the undercooled liquid phase in phase change material Ge2Sb2Te5. Adv. Mater. 31(39), 1900784 (2019)

    Article  Google Scholar 

  8. J.E.K. Schawe, J.F. Löffler, Kinetics of structure formation in the vicinity of the glass transition. Acta Mater. 226, 117630 (2022)

    Article  CAS  Google Scholar 

  9. A.A. Minakov, C. Schick, Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1MK/s. Rev. Sci. Instrum. 78(7), 073902 (2007)

    Article  PubMed  Google Scholar 

  10. MYu. Efremov, F. Schiettekatte, M. Zhang, E.A. Olson, A.T. Kwan, R.S. Berry, L.H. Allen, Discrete periodic melting point observations for nanostructure ensembles. Phys. Rev. Lett. 85(17), 3560 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. S.L. Lai, G. Ramanath, L.H. Allen, P. Infante, Heat capacity measurements of Sn nanostructures using a thin-film differential scanning calorimeter with 0.2 nJ sensitivity. Appl. Phys. Lett. 70(1), 43 (1997)

    Article  CAS  Google Scholar 

  12. S. Pogatscher, P.J. Uggowitzer, J.F. Löffler, In-situ probing of metallic glass formation and crystallization upon heating and cooling via fast differential scanning calorimetry. Appl. Phys. Lett. 104(25), 251908 (2014)

    Article  Google Scholar 

  13. D. Lee, B. Zhao, E. Perim, H. Zhang, P. Gong, Y. Gao, Y. Liu, C. Toher, S. Curtarolo, J. Schroers, J.J. Vlassak, Crystallization behavior upon heating and cooling in Cu50Zr50 metallic glass thin films. Acta Mater. 121, 68 (2016)

    Article  CAS  Google Scholar 

  14. J. Orava, S. Balachandran, X. Han, O. Shuleshova, E. Nurouzi, I. Soldatov, S. Oswald, O. Gutowski, O. Ivashko, A.C. Dippel, M.V. Zimmermann, Y.P. Ivanov, A.L. Greer, D. Raabe, M. Herbig, I. Kaban, In situ correlation between metastable phase-transformation mechanism and kinetics in a metallic glass. Nat. Commun. 12(1), 2839 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Q. Cheng, X. Han, I. Kaban, I. Soldatov, W.H. Wang, Y.H. Sun, J. Orava, Phase transformations in a Cu–Zr–Al metallic glass. Scr. Mater. 183, 61 (2020)

    Article  CAS  Google Scholar 

  16. S. Küchemann, G. Gibbins, J. Corkerton, E. Brug, J. Ruebsam, K. Samwer, From ultrafast to slow: heating rate dependence of the glass transition temperature in metallic systems. Philos. Mag. Lett. 96(12), 454 (2016)

    Article  Google Scholar 

  17. M. Gao, J.H. Perepezko, Separating beta relaxation from alpha relaxation in fragile metallic glasses based on ultrafast flash differential scanning calorimetry. Phys. Rev. Mater. 4(2), 025602 (2020)

    Article  CAS  Google Scholar 

  18. R. Benedictus, Han, K, Bottger, A, Zandbergen, HW, Mittemeijer, EJ, Johnson, WC, Howe, JM, Laughlin, DE, and Soffa, WA: in Proc. Int. Conf. Solid-Solid Phase Transform. (1994), pp. 1027–1032.

  19. A.V. Bakulin, T.I. Spiridonova, S.E. Kulkova, Atomic self-diffusion in TiNi. Comput. Mater. Sci. 148, 1 (2018)

    Article  CAS  Google Scholar 

  20. M. Milosavljević, D. Toprek, M. Obradović, A. Grce, D. Peruško, G. Dražič, J. Kovač, K.P. Homewood, Ion irradiation induced solid-state amorphous reaction in Ni/Ti multilayers. Appl. Surf. Sci. 268, 516 (2013)

    Article  Google Scholar 

  21. B. Zhang, D.Q. Zhao, M.X. Pan, R.J. Wang, W.H. Wang, Formation of cerium-based bulk metallic glasses. Acta Mater. 54(11), 3025 (2006)

    Article  CAS  Google Scholar 

  22. Y. Zhao, B. Shang, B. Zhang, X. Tong, H. Ke, H. Bai, W.-H. Wang, Ultrastable metallic glass by room temperature aging. Sci. Adv. 8(33), eabn3623 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. B. Zhao, B. Yang, J. Rodríguez-Viejo, M. Wu, C. Schick, Q. Zhai, Y. Gao, Bridging the local configurations and crystalline counterparts of bulk metallic glass by nanocalorimetry. J. Mater. Res. Technol. 8(4), 3603 (2019)

    Article  CAS  Google Scholar 

  24. M. Lasocka, The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater. Sci. Eng. 23(2), 173 (1976)

    Article  CAS  Google Scholar 

  25. P.F. Xing, Y.X. Zhuang, W.H. Wang, L. Gerward, J.Z. Jiang, Glass transition, crystallization kinetics and pressure effect on crystallization of ZrNbCuNiBe bulk metallic glass. J. Appl. Phys. 91(8), 4956 (2002)

    Article  CAS  Google Scholar 

  26. G.S. Fulcher, Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8(6), 339 (1925)

    Article  CAS  Google Scholar 

  27. Q. Wang, L. Wang, M.Z. Ma, S. Binder, T. Volkmann, D.M. Herlach, J.S. Wang, Q.G. Xue, Y.J. Tian, R.P. Liu, Diffusion-controlled crystal growth in deeply undercooled melt on approaching the glass transition. Phys. Rev. B 83(1), 014202 (2011)

    Article  Google Scholar 

  28. C.A. Angell, Formation of glasses from liquids and biopolymers. Science 267(5206), 1924 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99(5), 4201 (1993)

    Article  Google Scholar 

  30. X.F. Liu, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Bulk metallic glasses based on binary cerium and lanthanum elements. Appl. Phys. Lett. 91(4), 041901 (2007)

    Article  Google Scholar 

  31. M.L.F. Nascimento, E.D. Zanotto, Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition? J. Chem. Phys. 133(17), 174701 (2010)

    Article  PubMed  Google Scholar 

  32. C.T. Powell, K. Paeng, Z. Chen, R. Richert, L. Yu, M.D. Ediger, Fast crystal growth from organic glasses: comparison of o-terphenyl with its structural analogs. J. Phys. Chem. B 118(28), 8203 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. S. Sastry, P.G. Debenedetti, F.H. Stillinger, Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393(6685), 554 (1998)

    Article  CAS  Google Scholar 

  34. P.G. Debenedetti, F.H. Stillinger, Supercooled liquids and the glass transition. Nature 410(6825), 259 (2001)

    Article  CAS  PubMed  Google Scholar 

  35. H. Wilson, Reviews-on the velocity of solidification and viscosity of supercooled liquids. J. Phys. Chem. 5(2), 151 (1900)

    Article  Google Scholar 

  36. J. Orava, A.L. Greer, Fast and slow crystal growth kinetics in glass-forming melts. J. Chem. Phys. 140(21), 214504 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. J.W.P. Schmelzer, A.S. Abyzov, V.M. Fokin, C. Schick, E.D. Zanotto, Crystallization of glass-forming liquids: maxima of nucleation, growth, and overall crystallization rates. J. Non-Cryst. Solids 429, 24 (2015)

    Article  CAS  Google Scholar 

  38. N. Mehta, A. Kumar, Some new observations on activation energy of crystal growth for thermally activated crystallization. J. Phys. Chem. B 120(6), 1175 (2016)

    Article  CAS  PubMed  Google Scholar 

  39. K.F. Kelton, Analysis of crystallization kinetics. Mater. Sci. Eng. A 226–228, 142 (1997)

    Article  Google Scholar 

  40. J. Orava, A.L. Greer, B. Gholipour, D.W. Hewak, C.E. Smith, Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 11(4), 279 (2012)

    Article  CAS  PubMed  Google Scholar 

  41. C.V. Thompson, F. Spaepen, On the approximation of the free energy change on crystallization. Acta Metall. 27(12), 1855 (1979)

    Article  CAS  Google Scholar 

  42. K. Mondal, U.K. Chatterjee, B.S. Murty, Gibb’s free energy for the crystallization of glass forming liquids. Appl. Phys. Lett. 83(4), 671 (2003)

    Article  CAS  Google Scholar 

  43. B. Zhang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Superior glass-forming ability through microalloying in cerium-based alloys. Phys. Rev. B 73(9), 092201 (2006)

    Article  Google Scholar 

  44. H. Vogel, Das Temperaturabhangigkeitsgesetz der Viskositat von Flussigkeiten. Phys. Z. 22, 645 (1921)

    CAS  Google Scholar 

  45. G. Tammann, W. Hesse, Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z. Für Anorg. Allg. Chem. 156(1), 245 (1926)

    Article  CAS  Google Scholar 

  46. https://en.wikipedia.org/wiki/Cerium.

  47. F. Spaepen, A structural model for the solid-liquid interface in monatomic systems. Acta Metall. 23(6), 729 (1975)

    Article  CAS  Google Scholar 

  48. D. Turnbull, Kinetics of solidification of supercooled liquid mercury droplets. J. Chem. Phys. 20(3), 411 (1952)

    Article  CAS  Google Scholar 

  49. C. Suryanarayana, A. Inoue, Bulk Metallic Glasses, 1st edn. (CRC Press, Boca Raton, 2011)

    Google Scholar 

  50. J. Schroers, A. Masuhr, W.L. Johnson, R. Busch, Pronounced asymmetry in the crystallization behavior during constant heating and cooling of a bulk metallic glass-forming liquid. Phys. Rev. B 60(17), 11855 (1999)

    Article  CAS  Google Scholar 

  51. B. Zhao, A.M. Rodrigues, K. Ding, H. Ma, G. Wu, Q. Zhai, Y. Gao, Approaching the melting temperature: three regimes in the non-isothermal crystallization of Ce68Al10Cu20Co2 bulk metallic glass revealed by nanocalorimetry. Intermetallics 116, 106653 (2020)

    Article  CAS  Google Scholar 

  52. S. van Herwaarden, E. Iervolino, F. van Herwaarden, T. Wijffels, A. Leenaers, V. Mathot, Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim. Acta 522(1), 46 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China (Grant Nos. 52071193 and 51671123). Bingge Zhao acknowledges the support from the Natural Science Foundation of Shanghai (Grant No. 23ZR1424100), Young Elite Scientist Sponsorship Program by CAST (Grant No. YESS20200334) and State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP202106).

Funding

This work is financially supported by National Natural Science Foundation of China (Grant Nos. 52071193 and 51671123), Natural Science Foundation of Shanghai (Grant No. 23ZR1424100), Young Elite Scientist Sponsorship Program by CAST (Grant No. YESS20200334) and State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP202106).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Bingge Zhao; Formal analysis and investigation: Zikang Wei, Chenhui Wang, Luojia Zhang, Jintao Luo, Bingge Zhao; Writing-original draft preparation: Zikang Wei, Chenhui Wang; Writing-review and editing: Luojia Zhang, Bingge Zhao; Funding acquisition: Bingge Zhao, Yulai Gao.

Corresponding author

Correspondence to Bingge Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Wang, C., Zhang, L. et al. Glass transition and crystallization of Ce68Al10Cu20Co2 bulk metallic glass studied by Flash DSC. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01339-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01339-z

Navigation