Skip to main content
Log in

Non-isothermal Crystallization Kinetics and Isothermal Crystallization Kinetics in Supercooled Liquid Region of Cu–Zr–Al–Y Bulk Metallic Glass

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The crystallization kinetics of Cu43Zr48Al9 and (Cu43Zr48Al9)98Y2 bulk metallic glasses in non-isothermal and isothermal conditions was studied by differential scanning calorimetry. In the non-isothermal and isothermal modes, the average activation energy of (Cu43Zr48Al9)98Y2 is larger than that of Cu43Zr48Al9, meaning the higher stability against crystallization of (Cu43Zr48Al9)98Y2. In addition, the average activation energies for Cu43Zr48Al9 and (Cu43Zr48Al9)98Y2 calculated using Arrhenius equation in isothermal mode are larger than the values calculated by Kissinger–Akahira–Sunose method in non-isothermal mode, indicating that the energy barrier is higher in isothermal mode. The Johnson–Mehl–Avrami model was used to analyze the crystallization kinetics in the non-isothermal and isothermal modes. The Avrami exponent n for Cu43Zr48Al9 is above 2.5, indicating that the crystallization is mainly determined by a diffusion-controlled three-dimensional growth with an increasing nucleation rate, while the Avrami exponent n for (Cu43Zr48Al9)98Y2 is in the range of 1.5–2.5 in the non-isothermal mode, implying that the crystallization is mainly governed by diffusion-controlled three-dimensional growth with decreasing nucleation rate. Finally, the Avrami exponents n for Cu43Zr48Al9 and (Cu43Zr48Al9)98Y2 are different in the non-isothermal and isothermal conditions, which imply different nucleation and growth behaviors during the crystallization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W.L. Johnson, MRS Bull. 24, 42 (1999)

    Article  Google Scholar 

  2. M. Telford, Mater. Today 7, 36 (2004)

    Article  Google Scholar 

  3. J.C. Huang, T.H. Chuang, Mater. Chem. Phys. 57, 195 (1999)

    Article  Google Scholar 

  4. A. Inoue, Acta Mater. 48, 279 (2000)

    Article  Google Scholar 

  5. J. Cui, J.S. Li, J. Wang, H.C. Kou, J.C. Qiao, S. Gravier, J.J. Blandin, J. Non-Cryst. Solids 404, 7 (2014)

    Article  Google Scholar 

  6. A. Inoue, W. Zhang, Mater. Trans. 43, 2921 (2002)

    Article  Google Scholar 

  7. F.G. Coury, W.J. Botta, C. Bolfarini, C.S. Kiminami, M.J. Kaufman, J. Non-Cryst. Solids 406, 79 (2014)

    Article  Google Scholar 

  8. B. Li, J.S. Li, X.H. Fan, J. Chen, Rare Met. Mater. Eng. 43, 1558 (2014). (in Chinese)

    Article  Google Scholar 

  9. Y. Zhang, J. Chen, G.L. Chen, X.J. Liu, Appl. Phys. Lett. 89, 131904 (2006)

    Article  Google Scholar 

  10. H.W. Xu, Y.Y. Du, Y. Deng, Trans. Nonferrous Met. Soc. China 22, 842 (2012). (in Chinese)

    Article  Google Scholar 

  11. D.H. Xu, D. Gang, W.L. Johnson, Phys. Rev. Lett. 92, 245504 (2004)

    Article  Google Scholar 

  12. K.G. Prashanth, S. Scudino, K.B. Surreddi, M. Sakaliyska, B.S. Murty, J. Eckert, Mater. Sci. Eng., A 279, 513 (2009)

    Google Scholar 

  13. H.E. Kissinger, Anal. Chem. 29, 1702 (1957)

    Article  Google Scholar 

  14. Y.H. Li, C. Yang, L.M. Kang, H.D. Zhao, S.G. Qu, X.Q. Li, W.W. Zhang, Y.Y. Li, J. Non-Cryst. Solids 432, 440 (2016)

    Article  Google Scholar 

  15. J.C. Qiao, J.M. Pelletier, J. Non-Cryst. Solids 357, 2590 (2011)

    Article  Google Scholar 

  16. L. Deng, B.W. Zhou, H.S. Yang, X. Jiang, B.Y. Jiang, X.G. Zhang, J. Alloys Compd. 632, 429 (2015)

    Article  Google Scholar 

  17. X.X. Hu, J.C. Qiao, J.M. Pelletier, Y. Yao, J. Non-Cryst. Solids 432, 254 (2016)

    Article  Google Scholar 

  18. A.A. Soliman, S. Al-Heniti, A. Al-Hajry, M. Al-Assiri, G. Al-Barakati, Thermochim. Acta 413, 57 (2004)

    Article  Google Scholar 

  19. Q.P. Cao, J.W. Liu, J.F. Li, Y.H. Zhou, X.D. Wang, J.Z. Jiang, J. Non-Cryst. Solids 357, 1182 (2011)

    Article  Google Scholar 

  20. X.F. Wang, D. Wang, B. Zhu, Y.J. Li, F.S. Han, J. Non-Cryst. Solids 385, 111 (2014)

    Article  Google Scholar 

  21. K.N. Lad, R.T. Savalia, A. Pratap, G.K. Dey, S. Banerjee, Thermochim. Acta 473, 74 (2008)

    Article  Google Scholar 

  22. W. Lu, B. Yan, W.H. Huang, J. Non-Cryst. Solids 351, 3320 (2005)

    Article  Google Scholar 

  23. S. Venkataraman, E. Rozhkova, J. Eckert, L. Schulta, D.J. Sordelet, Intermetallics 13, 833 (2005)

    Article  Google Scholar 

  24. L.K. Zhang, Z.H. Chen, Q. Zheng, D. Chen, Phys. B 411, 149 (2013)

    Article  Google Scholar 

  25. Z.F. Yao, J.C. Qiao, C. Zhang, J.M. Pelletier, Y. Yao, J. Non-Cryst. Solids 415, 42 (2015)

    Article  Google Scholar 

  26. Y.J. Yang, D.W. Xing, J. Shen, J.F. Sun, S.D. Wei, H.J. He, D.G. McCartney, J. Alloys Compd. 415, 106 (2006)

    Article  Google Scholar 

  27. S.W. Wei, B.Z. Ding, T.Q. Lei, Z.Q. Hu, Mater. Lett. 37, 263 (1998)

    Article  Google Scholar 

  28. M. Avrami, J. Chem. Phys. 8, 212 (1940)

    Article  Google Scholar 

  29. M. Avrami, J. Chem. Phys. 9, 177 (1941)

    Article  Google Scholar 

  30. J. Wang, H.C. Kou, J.S. Li, X.F. Gu, H. Zhong, H. Chang, L. Zhou, J. Phys. Chem. Solids 70, 1448 (2009)

    Article  Google Scholar 

  31. C. Peng, Z.H. Chen, X.Y. Zhao, A.L. Zhang, L.K. Zhang, D. Chen, J. Non-Cryst. Solids 405, 7 (2014)

    Article  Google Scholar 

  32. K.G. Raval, K.N. Lad, A. Pratap, A.M. Awasthi, S. Bhardwaj, Thermochim. Acta 425, 47 (2005)

    Article  Google Scholar 

  33. P. Gong, K.F. Yao, S.F. Zhao, J. Therm. Anal. Calorim. 121, 697 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Special Research Project for the Education Department of Shaanxi Province (No. 14JK1351) and the President Fund of Xi’an Technological University (No. 0852-302021407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Hui Fan.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Fan, XH., Li, B. et al. Non-isothermal Crystallization Kinetics and Isothermal Crystallization Kinetics in Supercooled Liquid Region of Cu–Zr–Al–Y Bulk Metallic Glass. Acta Metall. Sin. (Engl. Lett.) 31, 290–298 (2018). https://doi.org/10.1007/s40195-017-0625-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0625-0

Keywords

Navigation