Skip to main content
Log in

Structural engineering of Pt-based intermetallic catalysts

  • Invited Review
  • MRS Distinguished Invited Speaker
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Pt-based intermetallics exhibit distinctive physicochemical properties for electrocatalytic and thermocatalytic applications. It has been recognized that their catalytic performance is determined by their composition, configuration and surface structure. In this review, we summarize the advancements in the structural optimization of Pt-based intermetallic catalysts. We first introduce the crystal structures of Pt-based intermetallics, followed by a recapitulation of the thermodynamic and kinetic theory used to achieve these structures. Then, the optimization strategies, including ordering approaches and crystal regulation methods, are summarized. Furthermore, we delve into a discussion on the enhanced catalytic functions of Pt-based intermetallics in electrocatalysis and thermocatalysis. Finally, we outline future research directions focused on the practical industrial applications. We believe this review can inspire further exploration of materials for catalytic applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as this is review article and that there were no new datasets generated or analysed.

References

  1. S. Kang, Q. Zhang, Y. Qian, Z. Ji, C. Li, Z. Cong, Y. Zhang, J. Guo, W. Du, J. Huang, Q. You, A.K. Panday, M. Rupakheti, D. Chen, Ö. Gustafsson, M.H. Thiemens, D. Qin, Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. Natl. Sci. Rev. 6(4), 796 (2019). https://doi.org/10.1093/nsr/nwz031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Mitchell, R. Qin, N. Zheng, J. Pérez-Ramírez, Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 16(2), 129 (2021). https://doi.org/10.1038/s41565-020-00799-8

    Article  CAS  PubMed  Google Scholar 

  3. S. Chen, J. Liu, Q. Zhang, F. Teng, B.C. McLellan, A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renew. Sustain. Energy Rev. 167, 112537 (2022). https://doi.org/10.1016/j.rser.2022.112537

    Article  CAS  Google Scholar 

  4. D.I.A. McKay, A. Staal, J.F. Abrams, R. Winkelmann, B. Sakschewski, S. Loriani, I. Fetzer, S.E. Cornell, J. Rockström, T.M. Lenton, Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science 377(6611), 7950 (2022). https://doi.org/10.1126/science.abn7950

    Article  CAS  Google Scholar 

  5. H.A. Gasteiger, N.M. Marković, Just a dream—or future reality? Science 324(5923), 48 (2009). https://doi.org/10.1126/science.1172083

    Article  CAS  PubMed  Google Scholar 

  6. H.D. Matthews, S. Wynes, Current global efforts are insufficient to limit warming to 1.5°C. Science 376(6600), 1404 (2022). https://doi.org/10.1126/science.abo3378

    Article  CAS  PubMed  Google Scholar 

  7. F. Lin, M. Li, L. Zeng, M. Luo, S. Guo, Intermetallic nanocrystals for fuel-cells-based electrocatalysis. Chem. Rev. 123(22), 12507 (2023). https://doi.org/10.1021/acs.chemrev.3c00382

    Article  CAS  PubMed  Google Scholar 

  8. J. Liang, F. Ma, S. Hwang, X. Wang, J. Sokolowski, Q. Li, G. Wu, D. Su, Atomic arrangement engineering of metallic nanocrystals for energy-conversion electrocatalysis. Joule 3(4), 956 (2019). https://doi.org/10.1016/j.joule.2019.03.014

    Article  CAS  Google Scholar 

  9. P. Losch, W. Huang, E.D. Goodman, C.J. Wrasman, A. Holm, A.R. Riscoe, J.A. Schwalbe, M. Cargnello, Colloidal nanocrystals for heterogeneous catalysis. Nano Today 24, 15 (2019). https://doi.org/10.1016/j.nantod.2018.12.002

    Article  CAS  Google Scholar 

  10. X. Lei, J. Zhao, J. Wang, D. Su, Tracking lithiation with transmission electron microscopy. Sci. China Chem. 67(1), 291 (2024). https://doi.org/10.1007/s11426-022-1486-1

    Article  CAS  Google Scholar 

  11. Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), 4998 (2017). https://doi.org/10.1126/science.aad4998

    Article  Google Scholar 

  12. J. Jung, S. Kang, L. Nicolaï, J. Hong, J. Minár, I. Song, W. Kyung, S. Cho, B. Kim, J.D. Denlinger, F.J.C.S. Aires, E. Ehret, P. Ross, J. Shim, S. Nemšák, D. Noh, S. Han, C. Kim, B.S. Mun, Understanding the role of electronic effects in CO on the Pt–Sn alloy surface via band structure measurements. ACS Catal. 12(1), 219 (2022). https://doi.org/10.1021/acscatal.1c04566

    Article  CAS  Google Scholar 

  13. J.Y. Liu, C. Liu, J. Yu, Theoretical investigation of the interaction of gas molecules with Pt-adsorbed arsenene monolayers. Comput. Theor. Chem. 1190, 112977 (2020). https://doi.org/10.1016/j.comptc.2020.112977

    Article  CAS  Google Scholar 

  14. V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6(3), 241 (2007). https://doi.org/10.1038/nmat1840

    Article  CAS  PubMed  Google Scholar 

  15. X. Lyu, Y. Jia, X. Mao, D. Li, G. Li, L. Zhuang, X. Wang, D. Yang, Q. Wang, A. Du, X. Yao, Gradient-concentration design of stable core-shell nanostructure for acidic oxygen reduction electrocatalysis. Adv. Mater. 32(32), 2003493 (2020). https://doi.org/10.1002/adma.202003493

    Article  CAS  Google Scholar 

  16. L. Wang, Z. Zeng, C. Ma, Y. Liu, M. Giroux, M. Chi, J. Jin, J. Greeley, C. Wang, Plating precious metals on nonprecious metal nanoparticles for sustainable electrocatalysts. Nano Lett. 17(6), 3391 (2017). https://doi.org/10.1021/acs.nanolett.7b00046

    Article  CAS  PubMed  Google Scholar 

  17. J. Zhao, B. Chen, F. Wang, Shedding light on the role of misfit strain in controlling core-shell nanocrystals. Adv. Mater. 32(46), 2004142 (2020). https://doi.org/10.1002/adma.202004142

    Article  CAS  Google Scholar 

  18. W. Cai, R. Mu, S. Zha, G. Sun, S. Chen, Z.-J. Zhao, H. Li, H. Tian, Y. Tang, F. Tao, L. Zeng, J. Gong, Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Sci. Adv. 4(8), 5418 (2018). https://doi.org/10.1126/sciadv.aar5418

    Article  CAS  Google Scholar 

  19. Y. Yan, J.S. Du, K.D. Gilroy, D. Yang, Y. Xia, H. Zhang, Intermetallic nanocrystals: syntheses and catalytic applications. Adv. Mater. (2017). https://doi.org/10.1002/adma.201605997

    Article  PubMed  Google Scholar 

  20. Y. Shi, Z. Lyu, M. Zhao, R. Chen, Q.N. Nguyen, Y. Xia, Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 121(2), 649 (2020). https://doi.org/10.1021/acs.chemrev.0c00454

    Article  CAS  PubMed  Google Scholar 

  21. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2(6), 454 (2010). https://doi.org/10.1038/nchem.623

    Article  CAS  PubMed  Google Scholar 

  22. T. Bligaard, J.K. Nørskov, Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 52(18), 5512 (2007). https://doi.org/10.1016/j.electacta.2007.02.041

    Article  CAS  Google Scholar 

  23. M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2(11), 17059 (2017). https://doi.org/10.1038/natrevmats.2017.59

    Article  CAS  Google Scholar 

  24. Y. Guo, M. Wang, Q. Zhu, D. Xiao, D. Ma, Ensemble effect for single-atom, small cluster and nanoparticle catalysts. Nat. Catal. 5(9), 766 (2022). https://doi.org/10.1038/s41929-022-00839-7

    Article  CAS  Google Scholar 

  25. B. Hammer, J.K. Nørskov, Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343(3), 211 (1995). https://doi.org/10.1016/0039-6028(96)80007-0

    Article  CAS  Google Scholar 

  26. B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376(6537), 238 (1995). https://doi.org/10.1038/376238a0

    Article  CAS  Google Scholar 

  27. J.K. Nørskov, Electronic factors in catalysis. Prog. Surf. Sci. 38(2), 103 (1991). https://doi.org/10.1016/0079-6816(91)90007-Q

    Article  Google Scholar 

  28. J.K. Norsko, Chemisorption on metal surfaces. Rep. Prog. Phys. 53(10), 1253 (1990). https://doi.org/10.1088/0034-4885/53/10/001

    Article  Google Scholar 

  29. J. Li, S. Sun, Intermetallic nanoparticles: synthetic control and their enhanced electrocatalysis. Acc. Chem. Res. 52(7), 2015 (2019). https://doi.org/10.1021/acs.accounts.9b00172

    Article  CAS  PubMed  Google Scholar 

  30. M. Zhou, C. Li, J. Fang, Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications. Chem. Rev. 121(2), 736 (2020). https://doi.org/10.1021/acs.chemrev.0c00436

    Article  CAS  PubMed  Google Scholar 

  31. W.-J. Zeng, C. Wang, Q.-Q. Yan, P. Yin, L. Tong, H.-W. Liang, Phase diagrams guide synthesis of highly ordered intermetallic electrocatalysts: separating alloying and ordering stages. Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-35457-1

    Article  PubMed  PubMed Central  Google Scholar 

  32. D. Wang, Y. Li, Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv. Mater. 23(9), 1044 (2011). https://doi.org/10.1002/adma.201003695

    Article  CAS  PubMed  Google Scholar 

  33. S. Arrhenius, Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. Phys. Chem. 4U(1), 96 (1889). https://doi.org/10.1515/zpch-1889-0408

    Article  Google Scholar 

  34. J. Li, S.Z. Jilani, H. Lin, X. Liu, K. Wei, Y. Jia, P. Zhang, M. Chi, Y.J. Tong, Z. Xi, S. Sun, Ternary CoPtAu nanoparticles as a general catalyst for highly efficient electro-oxidation of liquid fuels. Angew. Chem. Int. Ed. 58(33), 11527 (2019). https://doi.org/10.1002/anie.201906137

    Article  CAS  Google Scholar 

  35. Q. Chen, J. Zhang, Y. Jia, Z. Jiang, Z. Xie, L. Zheng, Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances. Nanoscale 6(12), 7019 (2014). https://doi.org/10.1039/C4NR00313F

    Article  CAS  PubMed  Google Scholar 

  36. Q. Feng, S. Zhao, D. He, S. Tian, L. Gu, X. Wen, C. Chen, Q. Peng, D. Wang, Y. Li, Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 140(8), 2773 (2018). https://doi.org/10.1021/jacs.7b13612

    Article  CAS  PubMed  Google Scholar 

  37. W. Chen, Z. Lei, T. Zeng, L. Wang, N. Cheng, Y. Tan, S. Mu, Structurally ordered PtSn intermetallic nanoparticles supported on ATO for efficient methanol oxidation reaction. Nanoscale 11(42), 19895 (2019). https://doi.org/10.1039/C9NR07245D

    Article  CAS  PubMed  Google Scholar 

  38. H. Rong, J. Mao, P. Xin, D. He, Y. Chen, D. Wang, Z. Niu, Y. Wu, Y. Li, Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: effective and stable catalysts. Adv. Mater. 28(13), 2540 (2016). https://doi.org/10.1002/adma.201504831

    Article  CAS  PubMed  Google Scholar 

  39. L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.-Y. Ma, D. Su, X. Huang, Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354(6318), 1410 (2016). https://doi.org/10.1126/science.aah6133

    Article  CAS  PubMed  Google Scholar 

  40. X. Yuan, X. Jiang, M. Cao, L. Chen, K. Nie, Y. Zhang, Y. Xu, X. Sun, Y. Li, Q. Zhang, Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Res. 12(2), 429 (2019). https://doi.org/10.1007/s12274-018-2234-2

    Article  CAS  Google Scholar 

  41. S. Luo, W. Chen, Y. Cheng, X. Song, Q. Wu, L. Li, X. Wu, T. Wu, M. Li, Q. Yang, K. Deng, Z. Quan, Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation. Adv. Mater. (2019). https://doi.org/10.1002/adma.201903683

    Article  PubMed  Google Scholar 

  42. X. Zhang, W. Shi, Y. Li, W. Zhao, S. Han, W. Shen, Pt3Ti intermetallic alloy formed by strong metal–support interaction over Pt/TiO2 for the selective hydrogenation of acetophenone. ACS Catal. 13(7), 4030 (2023). https://doi.org/10.1021/acscatal.2c06081

    Article  CAS  Google Scholar 

  43. Z. Cui, H. Chen, M. Zhao, D. Marshall, Y. Yu, H. Abruña, F.J. DiSalvo, Synthesis of structurally ordered Pt3Ti and Pt3V nanoparticles as methanol oxidation catalysts. J. Am. Chem. Soc. 136(29), 10206 (2014). https://doi.org/10.1021/ja504573a

    Article  CAS  PubMed  Google Scholar 

  44. Z. Cui, H. Chen, W. Zhou, M. Zhao, F.J. DiSalvo, Structurally ordered Pt3Cr as oxygen reduction electrocatalyst: ordering control and origin of enhanced stability. Chem. Mater. 27(21), 7538 (2015). https://doi.org/10.1021/acs.chemmater.5b03912

    Article  CAS  Google Scholar 

  45. Y. Luo, K. Li, Y. Chen, J. Feng, L. Wang, Y. Jiang, L. Li, G. Yu, J. Feng, Single-atom and hierarchical-pore aerogel confinement strategy for low-platinum fuel cells. Adv. Mater. 35(31), 2300624 (2023). https://doi.org/10.1002/adma.202300624

    Article  CAS  Google Scholar 

  46. Q. Li, L. Wu, G. Wu, D. Su, H. Lv, S. Zhang, W. Zhu, A. Casimir, H. Zhu, A. Mendoza-Garcia, S. Sun, New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett. 15(4), 2468 (2015). https://doi.org/10.1021/acs.nanolett.5b00320

    Article  CAS  PubMed  Google Scholar 

  47. C. Jung, C. Lee, K. Bang, J. Lim, H. Lee, H.J. Ryu, E. Cho, H.M. Lee, Synthesis of chemically ordered Pt3Fe/C intermetallic electrocatalysts for oxygen reduction reaction with enhanced activity and durability via a removable carbon coating. ACS Appl. Mater. Interfaces 9(37), 31806 (2017). https://doi.org/10.1021/acsami.7b07648

    Article  CAS  PubMed  Google Scholar 

  48. J. Li, S. Sharma, X. Liu, Y.-T. Pan, J.S. Spendelow, M. Chi, Y. Jia, P. Zhang, D.A. Cullen, Z. Xi, H. Lin, Z. Yin, B. Shen, M. Muzzio, C. Yu, Y.S. Kim, A.A. Peterson, K.L. More, H. Zhu, S. Sun, Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule. 3(1), 124 (2019). https://doi.org/10.1016/j.joule.2018.09.016

    Article  CAS  Google Scholar 

  49. X. Li, Y. He, S. Cheng, B. Li, Y. Zeng, Z. Xie, Q. Meng, L. Ma, K. Kisslinger, X. Tong, S. Hwang, S. Yao, C. Li, Z. Qiao, C. Shan, Y. Zhu, J. Xie, G. Wang, G. Wu, D. Su, Atomic structure evolution of Pt–Co binary catalysts: single metal sites versus intermetallic nanocrystals. Adv. Mater. (2021). https://doi.org/10.1002/adma.202106371

    Article  PubMed  PubMed Central  Google Scholar 

  50. L. Zou, J. Fan, Y. Zhou, C. Wang, J. Li, Z. Zou, H. Yang, Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Res. 8(8), 2777 (2015). https://doi.org/10.1007/s12274-015-0784-0

    Article  CAS  Google Scholar 

  51. X. Ye, R.-Y. Shao, P. Yin, H.-W. Liang, Y.-X. Chen, Ordered intermetallic PtCu catalysts made from Pt@Cu core/shell structures for oxygen reduction reaction. Inorg. Chem. 61(38), 15239 (2022). https://doi.org/10.1021/acs.inorgchem.2c02501

    Article  CAS  PubMed  Google Scholar 

  52. Z. Qi, C. Xiao, C. Liu, T.W. Goh, L. Zhou, R. Maligal-Ganesh, Y. Pei, X. Li, L.A. Curtiss, W. Huang, Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J. Am. Chem. Soc. 139(13), 4762 (2017). https://doi.org/10.1021/jacs.6b12780

    Article  CAS  PubMed  Google Scholar 

  53. Y. Kang, J.B. Pyo, X. Ye, T.R. Gordon, C.B. Murray, Synthesis, shape control, and methanol electro-oxidation properties of Pt–Zn alloy and Pt3Zn intermetallic nanocrystals. ACS Nano 6(6), 5642 (2012). https://doi.org/10.1021/nn301583g

    Article  CAS  PubMed  Google Scholar 

  54. Z. Li, L. Yu, C. Milligan, T. Ma, L. Zhou, Y. Cui, Z. Qi, N. Libretto, B. Xu, J. Luo, E. Shi, Z. Wu, H. Xin, W.N. Delgass, J.T. Miller, Y. Wu, Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-07502-5

    Article  PubMed  PubMed Central  Google Scholar 

  55. K. Wang, L. Wang, Z. Yao, L. Zhang, L. Zhang, X. Yang, Y. Li, Y.-G. Wang, Y. Li, F. Yang, Kinetic diffusion–controlled synthesis of twinned intermetallic nanocrystals for CO-resistant catalysis. Sci. Adv. 8(25), 4599 (2022). https://doi.org/10.1126/sciadv.abo4599

    Article  CAS  Google Scholar 

  56. Q. Wang, Z.L. Zhao, Z. Zhang, T. Feng, R. Zhong, H. Xu, S.T. Pantelides, M. Gu, Sub-3 nm intermetallic ordered Pt3In clusters for oxygen reduction reaction. Adv. Sci. (2019). https://doi.org/10.1002/advs.201901279

    Article  Google Scholar 

  57. S.-L. Xu, S. Zhao, W.-J. Zeng, S. Li, M. Zuo, Y. Lin, S. Chu, P. Chen, J. Liu, H.-W. Liang, Synthesis of a hexagonal-phase platinum-lanthanide alloy as a durable fuel-cell-cathode catalyst. Chem. Mater. 34(23), 10789 (2022). https://doi.org/10.1021/acs.chemmater.2c03219

    Article  CAS  Google Scholar 

  58. S. Bernal, J.J. Calvino, J.M. Gatica, C. Larese, C. López-Cartes, J.A. Pérez-Omil, Nanostructural evolution of a Pt/CeO2 catalyst reduced at increasing temperatures (473–1223 K): a HREM study. J. Catal. 169(2), 510 (1997). https://doi.org/10.1006/jcat.1997.1707

    Article  CAS  Google Scholar 

  59. J. Li, S. Sharma, K. Wei, Z. Chen, D. Morris, H. Lin, C. Zeng, M. Chi, Z. Yin, M. Muzzio, M. Shen, P. Zhang, A.A. Peterson, S. Sun, Anisotropic strain tuning of L10 ternary nanoparticles for oxygen reduction. J. Am. Chem. Soc. 142(45), 19209 (2020). https://doi.org/10.1021/jacs.0c08962

    Article  CAS  PubMed  Google Scholar 

  60. B.Y. Xia, H.B. Wu, X. Wang, X.W. Lou, One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 134(34), 13934 (2012). https://doi.org/10.1021/ja3051662

    Article  CAS  PubMed  Google Scholar 

  61. A.L. Wang, L. Zhu, Q. Yun, S. Han, L. Zeng, W. Cao, X. Meng, J. Xia, Q. Lu, Bromide ions triggered synthesis of noble metal–based intermetallic nanocrystals. Small (2020). https://doi.org/10.1002/smll.202003782

    Article  PubMed  PubMed Central  Google Scholar 

  62. J. Yu, S.-W. Yu, Z. Qi, X. Fang, T.-H. Kim, L. Zhou, S. Zhang, W. Huang, Synthesis of PtSn4 intermetallic nanodisks through a galvanic replacement mechanism. Chem. Mater. 34(15), 6968 (2022). https://doi.org/10.1021/acs.chemmater.2c01381

    Article  CAS  Google Scholar 

  63. L. Wu, A.P. Fournier, J.J. Willis, M. Cargnello, C.J. Tassone, In situ X-ray scattering guides the synthesis of uniform PtSn nanocrystals. Nano Lett. 18(6), 4053 (2018). https://doi.org/10.1021/acs.nanolett.8b02024

    Article  CAS  PubMed  Google Scholar 

  64. P.-C. Chen, X. Liu, J.L. Hedrick, Z. Xie, S. Wang, Q.-Y. Lin, M.C. Hersam, V.P. Dravid, C.A. Mirkin, Polyelemental nanoparticle libraries. Science 352(6293), 1565 (2016). https://doi.org/10.1126/science.aaf8402

    Article  CAS  PubMed  Google Scholar 

  65. Y. Yao, Z. Huang, P. Xie, S.D. Lacey, R.J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, M. Rehwoldt, D. Yu, M.R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, L. Hu, Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359(6383), 1489 (2018). https://doi.org/10.1126/science.aan5412

    Article  CAS  PubMed  Google Scholar 

  66. J. Lyubina, O. Isnard, O. Gutfleisch, K.-H. Müller, L. Schultz, Ordering of nanocrystalline Fe–Pt alloys studied by in situ neutron powder diffraction. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2360151

    Article  Google Scholar 

  67. X. Chen, S. Zhang, C. Li, Z. Liu, X. Sun, S. Cheng, D.N. Zakharov, S. Hwang, Y. Zhu, J. Fang, G. Wang, G. Zhou, Composition-dependent ordering transformations in Pt–Fe nanoalloys. Proc. Natl. Acad. Sci. 119(14), e2117899119 (2022). https://doi.org/10.1073/pnas.2117899119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Z. Xie, L.R. Winter, J.G. Chen, Bimetallic-derived catalysts and their application in simultaneous upgrading of CO2 and ethane. Matter 4(2), 408 (2021). https://doi.org/10.1016/j.matt.2020.11.013

    Article  CAS  Google Scholar 

  69. X. Feng, N. Yang, W. Zhang, W. Hong, L. Tan, F. Wang, D. Sun, W. Ding, J. Li, L. Li, Z. Wei, A sequential hydrogen-adsorption-assisted bond-weakening strategy for preparing sub-2-nm ordered Pt alloy nanocrystals. Matter 5(9), 2946 (2022). https://doi.org/10.1016/j.matt.2022.06.008

    Article  CAS  Google Scholar 

  70. A. Han, J. Zhang, W. Sun, W. Chen, S. Zhang, Y. Han, Q. Feng, L. Zheng, L. Gu, C. Chen, Q. Peng, D. Wang, Y. Li, Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-11794-6

    Article  PubMed  PubMed Central  Google Scholar 

  71. Z. Li, Z. Qi, S. Wang, T. Ma, L. Zhou, Z. Wu, X. Luan, F.-Y. Lin, M. Chen, J.T. Miller, H. Xin, W. Huang, Y. Wu, In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions. Nano Lett. 19(8), 5102 (2019). https://doi.org/10.1021/acs.nanolett.9b01381

    Article  CAS  PubMed  Google Scholar 

  72. Z. Li, Y. Cui, Z. Wu, C. Milligan, L. Zhou, G. Mitchell, B. Xu, E. Shi, J.T. Miller, F.H. Ribeiro, Y. Wu, Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 1(5), 349 (2018). https://doi.org/10.1038/s41929-018-0067-8

    Article  CAS  Google Scholar 

  73. X. Li, Y. He, S. Cheng, B. Li, Y. Zeng, Z. Xie, Q. Meng, L. Ma, K. Kisslinger, X. Tong, S. Hwang, S. Yao, C. Li, Z. Qiao, C. Shan, Y. Zhu, J. Xie, G. Wang, G. Wu, D. Su, Atomic structure evolution of Pt–Co binary catalysts: single metal sites versus intermetallic nanocrystals. Adv. Mater. 33(48), 2106371 (2021). https://doi.org/10.1002/adma.202106371

    Article  CAS  Google Scholar 

  74. X. Ao, W. Zhang, B. Zhao, Y. Ding, G. Nam, L. Soule, A. Abdelhafiz, C. Wang, M. Liu, Atomically dispersed Fe–N–C decorated with Pt-alloy core–shell nanoparticles for improved activity and durability towards oxygen reduction. Energy Environ. Sci. 13(9), 3032 (2020). https://doi.org/10.1039/D0EE00832J

    Article  CAS  Google Scholar 

  75. X. Wang, N. Fu, J.-C. Liu, K. Yu, Z. Li, Z. Xu, X. Liang, P. Zhu, C. Ye, A. Zhou, A. Li, L. Zheng, L.-M. Liu, C. Chen, D. Wang, Q. Peng, Y. Li, Atomic replacement of PtNi nanoalloys within Zn-ZIF-8 for the fabrication of a multisite CO2 reduction electrocatalyst. J. Am. Chem. Soc. 144(50), 23223 (2022). https://doi.org/10.1021/jacs.2c11497

    Article  CAS  PubMed  Google Scholar 

  76. X.X. Wang, S. Hwang, Y.-T. Pan, K. Chen, Y. He, S. Karakalos, H. Zhang, J.S. Spendelow, D. Su, G. Wu, Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction. Nano Lett. 18(7), 4163 (2018). https://doi.org/10.1021/acs.nanolett.8b00978

    Article  CAS  PubMed  Google Scholar 

  77. T.-W. Song, C. Xu, Z.-T. Sheng, H.-K. Yan, L. Tong, J. Liu, W.-J. Zeng, L.-J. Zuo, P. Yin, M. Zuo, S.-Q. Chu, P. Chen, H.-W. Liang, Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts. Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-34037-7

    Article  PubMed  PubMed Central  Google Scholar 

  78. Y. Zeng, J. Liang, C. Li, Z. Qiao, B. Li, S. Hwang, N.N. Kariuki, C.-W. Chang, M. Wang, M. Lyons, S. Lee, Z. Feng, G. Wang, J. Xie, D.A. Cullen, D.J. Myers, G. Wu, Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt. J. Am. Chem. Soc. 145(32), 17643 (2023). https://doi.org/10.1021/jacs.3c03345

    Article  CAS  PubMed  Google Scholar 

  79. C.-L. Yang, L.-N. Wang, P. Yin, J. Liu, M.-X. Chen, Q.-Q. Yan, Z.-S. Wang, S.-L. Xu, S.-Q. Chu, C. Cui, H. Ju, J. Zhu, Y. Lin, J. Shui, H.-W. Liang, Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374(6566), 459 (2021). https://doi.org/10.1126/science.abj9980

    Article  CAS  PubMed  Google Scholar 

  80. D.Y. Chung, S.W. Jun, G. Yoon, S.G. Kwon, D.Y. Shin, P. Seo, J.M. Yoo, H. Shin, Y.-H. Chung, H. Kim, B.S. Mun, K.-S. Lee, N.-S. Lee, S.J. Yoo, D.-H. Lim, K. Kang, Y.-E. Sung, T. Hyeon, Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 137(49), 15478 (2015). https://doi.org/10.1021/jacs.5b09653

    Article  CAS  PubMed  Google Scholar 

  81. X. Liu, Z. Zhao, J. Liang, S. Li, G. Lu, C. Priest, T. Wang, J. Han, G. Wu, X. Wang, Y. Huang, Q. Li, Inducing covalent atomic interaction in intermetallic Pt alloy nanocatalysts for high-performance fuel cells. Angew. Chem. Int. Ed. 62(23), e202302134 (2023). https://doi.org/10.1002/anie.202302134

    Article  CAS  Google Scholar 

  82. D. Zhou, G. Zhang, Y. Li, S. Liu, S. Han, Y. Zhou, W. Shen, Enriching Pt3 ensemble with isolated 3-fold hollow site by crystal-phase engineering of Pt3Fe single-nanoparticle for acetylene hydrogenation. Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2023.144875

    Article  PubMed  PubMed Central  Google Scholar 

  83. H.Y. Kim, J.M. Kim, Y. Ha, J. Woo, A. Byun, T.J. Shin, K.H. Park, H.Y. Jeong, H. Kim, J.Y. Kim, S.H. Joo, Activity origin and multifunctionality of Pt-based intermetallic nanostructures for efficient electrocatalysis. ACS Catal. 9(12), 11242 (2019). https://doi.org/10.1021/acscatal.9b03155

    Article  CAS  Google Scholar 

  84. G. Feng, F. Ning, Y. Pan, T. Chen, J. Song, Y. Wang, R. Zou, D. Su, D. Xia, Engineering structurally ordered high-entropy intermetallic nanoparticles with high-activity facets for oxygen reduction in practical fuel cells. J. Am. Chem. Soc. 145(20), 11140 (2023). https://doi.org/10.1021/jacs.3c00868

    Article  CAS  PubMed  Google Scholar 

  85. J.T.L. Gamler, H.M. Ashberry, S.E. Skrabalak, K.M. Koczkur, Random alloyed versus intermetallic nanoparticles: a comparison of electrocatalytic performance. Adv. Mater. (2018). https://doi.org/10.1002/adma.201801563

    Article  PubMed  Google Scholar 

  86. F. Xing, Y. Nakaya, S. Yasumura, K.-I. Shimizu, S. Furukawa, Ternary platinum–cobalt–indium nanoalloy on ceria as a highly efficient catalyst for the oxidative dehydrogenation of propane using CO2. Nat. Catal. 5(1), 55 (2022). https://doi.org/10.1038/s41929-021-00730-x

    Article  CAS  Google Scholar 

  87. V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45(18), 2897 (2006). https://doi.org/10.1002/anie.200504386

    Article  CAS  Google Scholar 

  88. E.B. Tetteh, C. Gyan-Barimah, H.-Y. Lee, T.-H. Kang, S. Kang, S. Ringe, J.-S. Yu, Strained Pt(221) facet in a PtCo@Pt-Rich catalyst boosts oxygen reduction and hydrogen evolution activity. ACS Appl. Mater. Interfaces 14(22), 25246 (2022). https://doi.org/10.1021/acsami.2c00398

    Article  CAS  PubMed  Google Scholar 

  89. M. Xie, Z. Lyu, R. Chen, M. Shen, Z. Cao, Y. Xia, Pt–Co@Pt octahedral nanocrystals: enhancing their activity and durability toward oxygen reduction with an intermetallic core and an ultrathin shell. J. Am. Chem. Soc. 143(22), 8509 (2021). https://doi.org/10.1021/jacs.1c04160

    Article  CAS  PubMed  Google Scholar 

  90. H. Cheng, R. Gui, H. Yu, C. Wang, S. Liu, H. Liu, T. Zhou, N. Zhang, X. Zheng, W. Chu, Y. Lin, H. Wu, C. Wu, Y. Xie, Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction. Proc. Natl. Acad. Sci. 118(35), e2104026118 (2021). https://doi.org/10.1073/pnas.2104026118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. J. Li, Z. Xi, Y.-T. Pan, J.S. Spendelow, P.N. Duchesne, D. Su, Q. Li, C. Yu, Z. Yin, B. Shen, Y.S. Kim, P. Zhang, S. Sun, Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells. J. Am. Chem. Soc. 140(8), 2926 (2018). https://doi.org/10.1021/jacs.7b12829

    Article  CAS  PubMed  Google Scholar 

  92. J. Liang, Z. Zhao, N. Li, X. Wang, S. Li, X. Liu, T. Wang, G. Lu, D. Wang, B.-J. Hwang, Y. Huang, D. Su, Q. Li, Biaxial strains mediated oxygen reduction electrocatalysis on fenton reaction resistant l10-PtZn fuel cell cathode. Adv. Energy Mater. 10(29), 2000179 (2020). https://doi.org/10.1002/aenm.202000179

    Article  CAS  Google Scholar 

  93. T.-W. Song, L.-J. Zuo, M. Zuo, H.-W. Liang, Breaking trade-off between particle size and ordering degree of intermetallic catalysts for fuel cells. J. Catal. 419, 19 (2023). https://doi.org/10.1016/j.jcat.2023.01.026

    Article  CAS  Google Scholar 

  94. H. Abe, F. Matsumoto, L.R. Alden, S.C. Warren, H.D. Abruña, F.J. DiSalvo, Electrocatalytic performance of fuel oxidation by Pt3Ti nanoparticles. J. Am. Chem. Soc. 130(16), 5452 (2008). https://doi.org/10.1021/ja075061c

    Article  CAS  PubMed  Google Scholar 

  95. L. Zou, J. Li, T. Yuan, Y. Zhou, X. Li, H. Yang, Structural transformation of carbon-supported Pt3Cr nanoparticles from a disordered to an ordered phase as a durable oxygen reduction electrocatalyst. Nanoscale 6(18), 10686 (2014). https://doi.org/10.1039/C4NR02799J

    Article  CAS  PubMed  Google Scholar 

  96. J. Kim, Y. Lee, S. Sun, Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 132(14), 4996 (2010). https://doi.org/10.1021/ja1009629

    Article  CAS  PubMed  Google Scholar 

  97. D. Wang, H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. DiSalvo, H.D. Abruña, Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12(1), 81 (2012). https://doi.org/10.1038/nmat3458

    Article  CAS  PubMed  Google Scholar 

  98. H.-S. Chen, T.M. Benedetti, V.R. Gonçales, N.M. Bedford, R.W.J. Scott, R.F. Webster, S. Cheong, J.J. Gooding, R.D. Tilley, Preserving the exposed facets of Pt3Sn intermetallic nanocubes during an order to disorder transition allows the elucidation of the effect of the degree of alloy ordering on electrocatalysis. J. Am. Chem. Soc. 142(6), 3231 (2020). https://doi.org/10.1021/jacs.9b13313

    Article  CAS  PubMed  Google Scholar 

  99. Z. Liu, G.S. Jackson, B.W. Eichhorn, PtSn intermetallic, core-shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angew. Chem. Int. Ed. 49(18), 3173 (2010). https://doi.org/10.1002/anie.200907019

    Article  CAS  Google Scholar 

  100. Y. Chen, J. Pei, Z. Chen, A. Li, S. Ji, H. Rong, Q. Xu, T. Wang, A. Zhang, H. Tang, J. Zhu, X. Han, Z. Zhuang, G. Zhou, D. Wang, Pt atomic layers with tensile strain and rich defects boost ethanol electrooxidation. Nano Lett. 22(18), 7563 (2022). https://doi.org/10.1021/acs.nanolett.2c02572

    Article  CAS  PubMed  Google Scholar 

  101. N.M. Marković, R.R. Adžić, B.D. Cahan, E.B. Yeager, Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J. Electroanal. Chem. 377(1), 249 (1994). https://doi.org/10.1016/0022-0728(94)03467-2

    Article  Google Scholar 

  102. Z. Qiao, C. Wang, C. Li, Y. Zeng, S. Hwang, B. Li, S. Karakalos, J. Park, A.J. Kropf, E.C. Wegener, Q. Gong, H. Xu, G. Wang, D.J. Myers, J. Xie, J.S. Spendelow, G. Wu, Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements. Energy Environ. Sci. 14(9), 4948 (2021). https://doi.org/10.1039/D1EE01675J

    Article  CAS  Google Scholar 

  103. F. Zhou, Y. Ruan, M. Zhu, X. Gao, W. Guo, X. Liu, W. Wang, M. Chen, G. Wu, T. Yao, H. Zhou, Y. Wu, Coupling single-atom sites and ordered intermetallic PtM nanoparticles for efficient catalysis in fuel cells. Small (2023). https://doi.org/10.1002/smll.202302328

    Article  PubMed  Google Scholar 

  104. S. Iihama, S. Furukawa, T. Komatsu, Efficient catalytic system for chemoselective hydrogenation of halonitrobenzene to haloaniline using PtZn intermetallic compound. ACS Catal. 6(2), 742 (2016). https://doi.org/10.1021/acscatal.5b02464

    Article  CAS  Google Scholar 

  105. G. Saravanan, R. Khobragade, L.C. Nagar, N. Labhsetwar, Ordered intermetallic Pt–Cu nanoparticles for the catalytic CO oxidation reaction. RSC Adv. 6(88), 85634 (2016). https://doi.org/10.1039/C6RA19602K

    Article  CAS  Google Scholar 

  106. T. Komatsu, A. Tamura, Pt3Co and PtCu intermetallic compounds: promising catalysts for preferential oxidation of CO in excess hydrogen. J. Catal. 258(2), 306 (2008). https://doi.org/10.1016/j.jcat.2008.06.030

    Article  CAS  Google Scholar 

  107. W. He, X. Zhang, K. Zheng, C. Wu, Y. Pan, H. Li, L. Xu, R. Xu, W. Chen, Y. Liu, C. Wang, Z. Sun, S. Wei, Structural evolution of anatase-supported platinum nanoclusters into a platinum-titanium intermetallic containing platinum single atoms for enhanced catalytic CO oxidation. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202213365

    Article  Google Scholar 

  108. B.E.Q. Shao, L. Bu, S. Bai, Y. Li, X. Huang, Ordered PtPb/Pt core/shell nanodisks as highly active, selective, and stable catalysts for methanol reformation to H2. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201703430

    Article  Google Scholar 

  109. S. Liu, Y. Li, X. Yu, S. Han, Y. Zhou, Y. Yang, H. Zhang, Z. Jiang, C. Zhu, W.-X. Li, C. Wöll, Y. Wang, W. Shen, Tuning crystal-phase of bimetallic single-nanoparticle for catalytic hydrogenation. Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-32274-4

    Article  PubMed  PubMed Central  Google Scholar 

  110. J. Zhao, X. Liu, Z. Li, K. Feng, Y. Pan, P. Ji, K. Zhao, B. Yan, D. Zhou, D. Su, Tuning the CO2 hydrogenation activity via regulating the strong metal-support interactions of the Ni/Sm2O3 catalyst. ACS Catal. (2024). https://doi.org/10.1021/acscatal.3c06345

    Article  Google Scholar 

  111. Z. Wang, Y. Chen, S. Mao, K. Wu, K. Zhang, Q. Li, Y. Wang, Chemical insight into the structure and formation of coke on PtSn alloy during propane dehydrogenation. Adv. Sustain. Syst. 4(9), 2000092 (2020). https://doi.org/10.1002/adsu.202000092

    Article  CAS  Google Scholar 

  112. N.J. Escorcia, N.J. LiBretto, J.T. Miller, C.W. Li, Colloidal synthesis of well-defined bimetallic nanoparticles for nonoxidative alkane dehydrogenation. ACS Catal. 10(17), 9813 (2020). https://doi.org/10.1021/acscatal.0c01554

    Article  CAS  Google Scholar 

  113. M. Numan, E. Eom, A. Li, M. Mazur, H.W. Cha, H.C. Ham, C. Jo, S.-E. Park, Oxidative dehydrogenation of ethane with CO2 as a soft oxidant over a PtCe bimetallic catalyst. ACS Catal. 11(15), 9221 (2021). https://doi.org/10.1021/acscatal.1c01156

    Article  CAS  Google Scholar 

  114. R. Ryoo, J. Kim, C. Jo, S.W. Han, J.-C. Kim, H. Park, J. Han, H.S. Shin, J.W. Shin, Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 585(7824), 221 (2020). https://doi.org/10.1038/s41586-020-2671-4

    Article  CAS  PubMed  Google Scholar 

  115. Y. Nakaya, F. Xing, H. Ham, K.-I. Shimizu, S. Furukawa, Doubly decorated platinum-gallium intermetallics as stable catalysts for propane dehydrogenation. Angew. Chem. Int. Ed. 60(36), 19715 (2021). https://doi.org/10.1002/anie.202107210

    Article  CAS  Google Scholar 

  116. Y. Nakaya, J. Hirayama, S. Yamazoe, K.-I. Shimizu, S. Furukawa, Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 11(1), 2838 (2020). https://doi.org/10.1038/s41467-020-16693-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. X. Chang, Z.-J. Zhao, Z. Lu, S. Chen, R. Luo, S. Zha, L. Li, G. Sun, C. Pei, J. Gong, Designing single-site alloy catalysts using a degree-of-isolation descriptor. Nat. Nanotechnol. 18(6), 611 (2023). https://doi.org/10.1038/s41565-023-01344-z

    Article  CAS  PubMed  Google Scholar 

  118. F. Xing, J. Ma, K.-I. Shimizu, S. Furukawa, High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2. Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-32842-8

    Article  PubMed  PubMed Central  Google Scholar 

  119. J. Wang, X. Chang, S. Chen, G. Sun, X. Zhou, E. Vovk, Y. Yang, W. Deng, Z.-J. Zhao, R. Mu, C. Pei, J. Gong, On the role of Sn segregation of Pt-Sn catalysts for propane dehydrogenation. ACS Catal. 11(8), 4401 (2021). https://doi.org/10.1021/acscatal.1c00639

    Article  CAS  Google Scholar 

  120. Y. Nakaya, E. Hayashida, H. Asakura, S. Takakusagi, S. Yasumura, K.-I. Shimizu, S. Furukawa, High-entropy intermetallics serve ultrastable single-atom Pt for propane dehydrogenation. J. Am. Chem. Soc. 144(35), 15944 (2022). https://doi.org/10.1021/jacs.2c01200

    Article  CAS  PubMed  Google Scholar 

  121. A.H. Motagamwala, R. Almallahi, J. Wortman, V.O. Igenegbai, S. Linic, Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 373(6551), 217 (2021). https://doi.org/10.1126/science.abg7894

    Article  CAS  PubMed  Google Scholar 

  122. Y. Yang, S. Louisia, S. Yu, J. Jin, I. Roh, C. Chen, M.V.F. Guzman, J. Feijóo, P.-C. Chen, H. Wang, C.J. Pollock, X. Huang, Y.-T. Shao, C. Wang, D.A. Muller, H.D. Abruña, P. Yang, Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614(7947), 262 (2023). https://doi.org/10.1038/s41586-022-05540-0

    Article  CAS  PubMed  Google Scholar 

  123. L. Sandoval-Diaz, D. Cruz, M. Vuijk, G. Ducci, M. Hävecker, W. Jiang, M. Plodinec, A. Hammud, D. Ivanov, T. Götsch, K. Reuter, R. Schlögl, C. Scheurer, A. Knop-Gericke, T. Lunkenbein, Metastable nickel–oxygen species modulate rate oscillations during dry reforming of methane. Nat. Catal. (2024). https://doi.org/10.1038/s41929-023-01090-4

    Article  Google Scholar 

  124. D. Zhou, Y. Wang, H.H.P. Garza, D. Su, An odyssey to operando environmental transmission electron microscopy: what’s next? Next Mater. 1(1), 100007 (2023). https://doi.org/10.1016/j.nxmate.2023.100007

    Article  Google Scholar 

  125. A.N. Korovin, I.S. Humonen, A.I. Samtsevich, R.A. Eremin, A.I. Vasilev, V.D. Lazarev, S.A. Budennyy, Boosting heterogeneous catalyst discovery by structurally constrained deep learning models. Mater. Today Chem. 30, 101541 (2023). https://doi.org/10.1016/j.mtchem.2023.101541

    Article  CAS  Google Scholar 

  126. M. Ge, F. Su, Z. Zhao, D. Su, Deep learning analysis on microscopic imaging in materials science. Mater. Today Nano 11, 100087 (2020). https://doi.org/10.1016/j.mtnano.2020.100087

    Article  Google Scholar 

  127. P. Yin, X. Niu, S.-B. Li, K. Chen, X. Zhang, M. Zuo, L. Zhang, H.-W. Liang, Machine-learning-accelerated design of high-performance platinum intermetallic nanoparticle fuel cell catalysts. Nat. Commun. 15(1), 415 (2024). https://doi.org/10.1038/s41467-023-44674-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. H. Zhao, W. Chen, H. Huang, Z. Sun, Z. Chen, L. Wu, B. Zhang, F. Lai, Z. Wang, M.L. Adam, C.H. Pang, P.K. Chu, Y. Lu, T. Wu, J. Jiang, Z. Yin, X.-F. Yu, A robotic platform for the synthesis of colloidal nanocrystals. Nat. Synth. 2(6), 505 (2023). https://doi.org/10.1038/s44160-023-00250-5

    Article  Google Scholar 

  129. Y. Yao, Z. Huang, T. Li, H. Wang, Y. Liu, H.S. Stein, Y. Mao, J. Gao, M. Jiao, Q. Dong, J. Dai, P. Xie, H. Xie, S.D. Lacey, I. Takeuchi, J.M. Gregoire, R. Jiang, C. Wang, A.D. Taylor, R. Shahbazian-Yassar, L. Hu, High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl. Acad. Sci. 117(12), 6316 (2020). https://doi.org/10.1073/pnas.1903721117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is financially supported by National Natural Science Foundation of China (Nos. 22105220, U21A20328, 52101277) and China Postdoctoral Science Foundation (No. 2021M703457).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. YW: Investigation, formal analysis and writing-original draft. XL: Visualization and writing-review. JZ: Visualization and writing-review. XL: Supervision and writing-review. LZ: Supervision and writing-review. DS: Supervision, conceptualization and writing-review. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dong Su.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lei, X., Zhao, J. et al. Structural engineering of Pt-based intermetallic catalysts. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01329-1

Keywords

Navigation