Skip to main content
Log in

Mechanical performance and optimization strategies of mantis shrimp rod inspired beam structural composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Inspired by the internal spiral structure of the mantis shrimp claw rod, a new type of beam-shaped composite materials with spiral-layered arrangement were designed, and the corresponding strengthening and toughening mechanisms with different spiral arrangement modes were explored. It is found that, unlike the existing shells or plates with spiral structures, a smaller spiral angle is of great significance to coordinate the contradiction between strength and toughness of beam materials. As the angle changes (small spiral angle), the full-field distribution of each stress component will undergo significant changes, leading to a transformation of the key stress components that dominate the damage and failure behavior. By adjusting the spiral angle, certain normal stress components inside can be reduced to improve the strength, and certain shear stress components can be increased to improve the toughness. These results will provide optimization strategies for the mechanical design of beam.

Graphical abstract

The beam with an internal structure of spiral laminated fiber has been designed. Its strength and toughness can be regulated and optimized by the stress distribution and the deformations and failure behavior controlled by the spiral angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The experimental data reported in this work is available upon reasonable by e-mail to the corresponding author.

References

  1. Z. Hu, K. Thiyagarajan, A. Bhusal, T. Letcher, Q.H. Fan, Q. Liu, D. Salem, Design of ultra-lightweight and high-strength cellular structural composites inspired by biomimetics. Compos. B Eng. 121, 108–121 (2017). https://doi.org/10.1016/j.compositesb.2017.03.033

    Article  CAS  Google Scholar 

  2. Q. Meng, Y. Gao, X. Shi, X.-Q. Feng, Three-dimensional crack bridging model of biological materials with twisted Bouligand structures. J. Mecha. Phys. Solids 159, 104729 (2022). https://doi.org/10.1016/j.jmps.2021.104729

    Article  Google Scholar 

  3. S. Ju, R.A. Shenoi, D. Jiang, A.J. Sobey, Multi-parameter optimization of lightweight composite triangular truss structure based on response surface methodology. Compos. Struct. 97, 107–116 (2013). https://doi.org/10.1016/j.compstruct.2012.10.025

    Article  Google Scholar 

  4. A.K. Singh, A. Shishkin, T. Koppel, N. Gupta, A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. B Eng. 149, 188–197 (2018). https://doi.org/10.1016/j.compositesb.2018.05.027

    Article  CAS  Google Scholar 

  5. H. Jia, Y. Li, Y. Luan, Y. Zheng, J. Yang, L. Wang, Z. Guo, X. Wu, Bioinspired Nacre-like GO-based bulk with easy scale-up process and outstanding mechanical properties. Compos. Part A Appl. Sci. Manuf.Manuf.. 132, 105829 (2020). https://doi.org/10.1016/j.compositesa.2020.105829

    Article  CAS  Google Scholar 

  6. C. Luo, F. Li, D. Li, Q. Fu, C. Pan, Bioinspired single-walled carbon nanotubes as a spider silk structure for ultrahigh mechanical property. ACS Appl. Mater. Interfaces 8, 31256–31263 (2016). https://doi.org/10.1021/acsami.6b11678

    Article  CAS  PubMed  Google Scholar 

  7. K. Friedrich, A.A. Almajid, Manufacturing aspects of advanced polymer composites for automotive applications. Appl. Compos. Mater. 20, 107–128 (2013). https://doi.org/10.1007/s10443-012-9258-7

    Article  CAS  Google Scholar 

  8. U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015). https://doi.org/10.1038/nmat4089

    Article  CAS  PubMed  Google Scholar 

  9. S.E. Naleway, M.M. Porter, J. McKittrick, M.A. Meyers, Structural design elements in biological materials: application to bioinspiration. Adv. Mater. 27, 5455–5476 (2015). https://doi.org/10.1002/adma.201502403

    Article  CAS  PubMed  Google Scholar 

  10. M. Deepa, S. Sahaya Jude Dhas, S.A. Martin BrittoDhas, Impact of shock waves on morphological, structural, optical and dielectric properties of l-alaninium maleate crystals. J. Mater. Res. (2023). https://doi.org/10.1557/s43578-023-01143-1

    Article  Google Scholar 

  11. R.L. Crane, S.M. Cox, S.A. Kisare, S.N. Patek, Smashing mantis shrimp strategically impact shells. J. Exp. Biol. 221, jeb176099 (2018). https://doi.org/10.1242/jeb.176099

    Article  PubMed  Google Scholar 

  12. X. Li, J. Wang, J. Du, M. Cao, K. Liu, Q. Li, X.-Q. Feng, L. Jiang, Spear and Shield: survival war between mantis shrimps and abalones. Adv. Mater. Interfaces 2, 1500250 (2015). https://doi.org/10.1002/admi.201500250

    Article  Google Scholar 

  13. N. Guarín-Zapata, J. Gomez, N. Yaraghi, D. Kisailus, P.D. Zavattieri, Shear wave filtering in naturally-occurring Bouligand structures. Acta Biomater. 23, 11–20 (2015). https://doi.org/10.1016/j.actbio.2015.04.039

    Article  PubMed  Google Scholar 

  14. L.T. Govindaraman, A. Arjunan, A. Baroutaji, J. Robinson, M. Ramadan, A.-G. Olabi, Nanomaterials Theory and Applications, in Encyclopedia of Smart Materials. (Elsevier, Amsterdam, 2022), pp.302–314

    Chapter  Google Scholar 

  15. S. Fan, J. Zhang, B. Wang, J. Chen, W. Yang, W. Liu, Y. Li, A deep learning method for fast predicting curing process-induced deformation of aeronautical composite structures. Compos. Sci. Technol. 232, 109844 (2023). https://doi.org/10.1016/j.compscitech.2022.109844

    Article  CAS  Google Scholar 

  16. X. Li, X. Li, X. Hou, Y. Li, Y. Meng, L. Ma, Y. Tian, Mantis shrimp-inspired underwater striking device generates cavitation. J. Bionic Eng. 19, 1758–1770 (2022). https://doi.org/10.1007/s42235-022-00227-8

    Article  Google Scholar 

  17. Y. Bouligand, Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4, 189–217 (1972). https://doi.org/10.1016/S0040-8166(72)80042-9

    Article  CAS  PubMed  Google Scholar 

  18. F.G. Barth, Microfiber reinforcement of an arthropod cuticle: laminated composite material in biology. Z.Zellforsch. 144, 409–433 (1973). https://doi.org/10.1007/BF00307585

    Article  CAS  PubMed  Google Scholar 

  19. F.D. Fischer, O. Kolednik, J. Predan, H. Razi, P. Fratzl, Crack driving force in twisted plywood structures. Acta Biomater. 55, 349–359 (2017). https://doi.org/10.1016/j.actbio.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  20. J.S. Shang, N.H.H. Ngern, V.B.C. Tan, Crustacean-inspired helicoidal laminates. Compos. Sci. Technol. 128, 222–232 (2016). https://doi.org/10.1016/j.compscitech.2016.04.007

    Article  CAS  Google Scholar 

  21. X. Zhang, Y. Luan, Y. Li, Z. Wang, Z. Li, F. Xu, Z. Guo, Bioinspired design of lightweight laminated structural materials and the intralayer/interlayer strengthening and toughening mechanisms induced by the helical structure. Compos. Struct. 276, 114575 (2021). https://doi.org/10.1016/j.compstruct.2021.114575

    Article  CAS  Google Scholar 

  22. H. Diao, P. Robinson, M.R. Wisnom, A. Bismarck, Unidirectional carbon fibre reinforced polyamide-12 composites with enhanced strain to tensile failure by introducing fibre waviness. Compos. A Appl. Sci. Manuf. 87, 186–193 (2016). https://doi.org/10.1016/j.compositesa.2016.04.025

    Article  CAS  Google Scholar 

  23. E.A. Zimmermann, B. Gludovatz, E. Schaible, N.K.N. Dave, W. Yang, M.A. Meyers, R.O. Ritchie, Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat. Commun. 4, 2634 (2013). https://doi.org/10.1038/ncomms3634

    Article  CAS  PubMed  Google Scholar 

  24. P. Davies, B.R.K. Blackman, A.J. Brunner, Standard test methods for delamination resistance of composite materials: current status. Appl. Compos. Mater. 5, 345–364 (1998)

    Article  Google Scholar 

  25. S. Isnard, A.R. Cobb, N.M. Holbrook, M. Zwieniecki, J. Dumais, Tensioning the helix: a mechanism for force generation in twining plants. Proc. R. Soc. B 276, 2643–2650 (2009). https://doi.org/10.1098/rspb.2009.0380

    Article  PubMed  PubMed Central  Google Scholar 

  26. M. Pandey, A.S. Verma, P.C. Pandey, R.J. Narayan, Bone tissue engineering application of 3-aminopropyltrimethoxysilane functionalized Au/Ag bimetallic nanoparticles incorporated hydroxyapatite bioceramic. J. Mater. Res. 38, 4157–4174 (2023). https://doi.org/10.1557/s43578-023-01132-4

    Article  CAS  Google Scholar 

  27. Y. Yang, Z. Chen, X. Song, Z. Zhang, J. Zhang, K.K. Shung, Q. Zhou, Y. Chen, Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Adv. Mater. 29, 1605750 (2017). https://doi.org/10.1002/adma.201605750

    Article  CAS  Google Scholar 

  28. S.-M. Chen, H.-L. Gao, Y.-B. Zhu, H.-B. Yao, L.-B. Mao, Q.-Y. Song, J. Xia, Z. Pan, Z. He, H.-A. Wu, S.-H. Yu, Biomimetic twisted plywood structural materials. Natl. Sci. Rev. 5, 703–714 (2018). https://doi.org/10.1093/nsr/nwy080

    Article  CAS  Google Scholar 

  29. D. Quan, G. Wang, G. Zhao, R. Alderliesten, On the interlayer toughening of carbon fibre/epoxy composites using surface-activated ultra-thin PEEK films. Compos. Struct. 303, 116309 (2023). https://doi.org/10.1016/j.compstruct.2022.116309

    Article  CAS  Google Scholar 

  30. T. Rev, M.R. Wisnom, X. Xu, G. Czél, The effect of transverse compressive stresses on tensile failure of carbon fibre/epoxy composites. Compos. Part A Appl. Sci. Manuf.Manuf.. 156, 106894 (2022). https://doi.org/10.1016/j.compositesa.2022.106894

    Article  CAS  Google Scholar 

  31. Z. Liu, P. Li, N. Srikanth, T. Liu, G.B. Chai, Quantification of flexural fatigue life and 3D damage in carbon fibre reinforced polymer laminates. Compos. A Appl. Sci. Manuf. 90, 778–785 (2016). https://doi.org/10.1016/j.compositesa.2016.09.008

    Article  CAS  Google Scholar 

  32. K. Wu, Z. Song, S. Zhang, Y. Ni, S. Cai, X. Gong, L. He, S.-H. Yu, Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity. Proc. Natl. Acad. Sci. U.S.A. 117, 15465–15472 (2020). https://doi.org/10.1073/pnas.2000639117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. X. Zhang, W. Lu, T. Chen, Elevating strength–ductility synergy in aluminum matrix composites by multiscale and dual-structured reinforcing particulates. J. Mater. Res. 38, 4130–4143 (2023). https://doi.org/10.1557/s43578-023-01128-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [Grant No.12041201], the Natural Science Foundation of Shanxi Province [Grant Nos. 202203021211126, 202303021221030].

Funding

National Natural Science Foundation of China, 12041201, Yunbo Luan,Natural Science Foundation of Shanxi Province, 202203021211126, Yongcun Li, 202303021221030, Yunbo Luan.

Author information

Authors and Affiliations

Authors

Contributions

JZ: formal analysis; investigation; methodology; visualization; writing-original draft. WN: methodology; investigation. YL: methodology; investigation. XW: writing-review & editing; visualization; formal analysis. ZG: writing-review & editing. YL: conceptualization; funding acquisition; resources; supervision.

Corresponding author

Correspondence to Yunbo Luan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 940 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Niu, W., Li, Y. et al. Mechanical performance and optimization strategies of mantis shrimp rod inspired beam structural composites. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01323-7

Keywords

Navigation