Skip to main content
Log in

A systematic investigation on the potential X-ray attenuation properties of Mg-doped SnO2 epoxy nanocomposite-based aprons as an alternate for lead commercial aprons

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study focuses on synthesizing and characterizing Mg-doped SnO2 nanoparticles as a safe substitute for lead-based X-ray shielding aprons. Various molar weight percentages of Mg dopant were utilized during synthesis, and the resulting samples were analyzed using multiple techniques, such as X-ray diffraction, UV–visible, Photoluminescence, Raman spectroscopy, energy-dispersive X-ray spectroscopy, high-resolution transmission and scanning electron microscopes. The nanoparticles were then combined with a nano-epoxy polymer composite and coated onto rexine cloth through drop casting. To assess the X-ray shielding performance, the percentage of attenuation, attenuation coefficient, and half-value layer studies were conducted. Comparative analysis with traditional lead oxide (PbO) aprons revealed that the 3% Mg-doped SnO2 nanocomposite aprons exhibited superior X-ray attenuation properties. In summary, this study highlights the potential of Mg-doped SnO2 nanoparticles as an effective, hydrophobic, and lightweight alternative to commercial aprons that are made of toxic, hydrophilic, and heavy lead-based materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. L. Chang, Y. Zhang, Y. Liu, J. Fang, W. Luan, X. Yang, W. Zhang, Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 356, 88–93 (2015). https://doi.org/10.1016/j.nimb.2015.04.062

    Article  CAS  Google Scholar 

  2. N.Z.N. Azman, N.F.L. Musa, N.N.A.N.A. Razak, R.M. Ramli, I.S. Mustafa, A.A. Rahman, N.Z. Yahaya, Effect of Bi2O3 particle sizes and addition of starch into Bi2O3–PVA composites for x-ray shielding. Appl. Phys. A Mater. Sci. Process. 122, 1–9 (2016). https://doi.org/10.1007/s00339-016-0329-8

    Article  CAS  Google Scholar 

  3. H.H. Aygün, M.H. Alma, Bismuth (III) oxide/polyethylene terephthalate nanocomposite fiber coated polyester spunbonds for ionizing radiation protection. Appl. Phys. A Mater. Sci. Process. 126, 1–8 (2020). https://doi.org/10.1007/s00339-020-03880-0

    Article  CAS  Google Scholar 

  4. S.J. Hyun, K.J. Kim, T.A. Jahng, H.J. Kim, Efficiency of lead aprons in blocking radiation − how protective are they? Heliyon (2016). https://doi.org/10.1016/j.heliyon.2016.e00117

    Article  PubMed  PubMed Central  Google Scholar 

  5. A.M.A. Mostafa, S.A.M. Issa, M.I. Sayyed, Gamma ray shielding properties of PbO-B2O3-P2O5 doped with WO3. J. Alloys Compd. 708, 294–300 (2017). https://doi.org/10.1016/j.jallcom.2017.02.303

    Article  CAS  Google Scholar 

  6. K.T. Varughese, V. Harish, N. Nagaiah, T. Niranjana Prabhu, Preparation and characterization of lead monoxide filled unsaturated polyester based polymer composites for gamma radiation shielding applications. J. Appl. Polym. Sci.Polym. Sci. 112, 1503–1508 (2009). https://doi.org/10.1002/app.29633

    Article  CAS  Google Scholar 

  7. K. Yue, W. Luo, X. Dong, C. Wang, G. Wu, M. Jiang, Y. Zha, A new lead-free radiation shielding material for radiotherapy. Radiat. Prot. Dosimetry 133, 256–260 (2009). https://doi.org/10.1093/rpd/ncp053

    Article  CAS  PubMed  Google Scholar 

  8. A.K. Singh, R.K. Singh, B. Sharma, A.K. Tyagi, Characterization and biocompatibility studies of lead free X-ray shielding polymer composite for healthcare application. Radiat. Phys. Chem. 138, 9–15 (2017). https://doi.org/10.1016/j.radphyschem.2017.04.016

    Article  CAS  Google Scholar 

  9. S. Sambhudevan, B. Shankar, A. Saritha, K. Joseph, J. Philip, T. Saravanan, Development of X-ray protective garments from rare earth-modified natural rubber composites. J. Elastomers Plast. 49, 527–544 (2017). https://doi.org/10.1177/0095244316676866

    Article  CAS  Google Scholar 

  10. Y. Kim, S. Park, Y. Seo, Enhanced X-ray shielding ability of polymer-nonleaded metal composites by multilayer structuring. Ind. Eng. Chem. Res. 54, 5968–5973 (2015). https://doi.org/10.1021/acs.iecr.5b00425

    Article  CAS  Google Scholar 

  11. A. Aghaz, R. Faghihi, S.M.J. Mortazavi, A. Haghparast, S. Mehdizadeh, S. Sina, Radiation attenuation properties of shields containing micro and Nano WO3 in diagnostic X-ray energy range. Int. J. Radiat. Res. 14, 127–131 (2016). https://doi.org/10.18869/acadpub.ijrr.14.2.127

    Article  Google Scholar 

  12. S. Nambiar, E.K. Osei, J.T.W. Yeow, Polymer nanocomposite-based shielding against diagnostic X-rays. J. Appl. Polym. Sci. 127, 4939–4946 (2013). https://doi.org/10.1002/app.37980

    Article  CAS  Google Scholar 

  13. E.W. Taylor, Organics, polymers and nanotechnology for radiation hardening and shielding applications. Nanophotonics Macrophotonics Sp. Environ. 6713, 671307 (2007). https://doi.org/10.1117/12.729156

    Article  CAS  Google Scholar 

  14. F. Safaei, S.N. Khorasani, H. Rahnama, R.E. Neisiany, M.S. Koochaki, Single microcapsules containing epoxy healing agent used for development in the fabrication of cost efficient self-healing epoxy coating. Prog. Org. Coat. 114, 40–46 (2018). https://doi.org/10.1016/j.porgcoat.2017.09.019

    Article  CAS  Google Scholar 

  15. S.A. Haddadi, S. Hu, S. Ghaderi, A. Ghanbari, M. Ahmadipour, S.Y. Pung, S. Li, M. Feilizadeh, M. Arjmand, Amino-functionalized mxene nanosheets doped with Ce(III) as potent nanocontainers toward self-healing epoxy nanocomposite coating for corrosion protection of mild steel. ACS Appl. Mater. Interfaces 13, 42074–42093 (2021). https://doi.org/10.1021/acsami.1c13055

    Article  CAS  PubMed  Google Scholar 

  16. X. Liu, H. Zhang, J. Wang, Z. Wang, S. Wang, Preparation of epoxy microcapsule based self-healing coatings and their behavior. Surf. Coat. Technol. 206, 4976–4980 (2012). https://doi.org/10.1016/j.surfcoat.2012.05.133

    Article  CAS  Google Scholar 

  17. B.M. Abunahel, R.M. Ramli, K.M. Quffa, N.Z.N. Azman, Effect of nanofibrous porosity on the X-ray attenuation properties of electrospun n-Bi2O3/epoxy–polyvinyl alcohol (PVA) nanofiber mats. Appl. Phys. A Mater. Sci. Process. (2018). https://doi.org/10.1007/s00339-018-1975-9

    Article  Google Scholar 

  18. Y. Dong, S.Q. Chang, H.X. Zhang, C. Ren, B. Kang, M.Z. Dai, Y.D. Dai, Effects of WO3 particle size in WO3/Epoxy resin radiation shielding material. Chin. Phys. Lett. (2012). https://doi.org/10.1088/0256-307X/29/10/108102

    Article  Google Scholar 

  19. F.I. El-Agawany, O.L. Tashlykov, K.A. Mahmoud, Y.S. Rammah, The radiation-shielding properties of ternary SiO2–SnO–SnF2 glasses: simulation and theoretical study. Ceram. Int. 46, 23369–23378 (2020). https://doi.org/10.1016/j.ceramint.2020.04.042

    Article  CAS  Google Scholar 

  20. A.S. Abouhaswa, Y.S. Rammah, S.E. Ibrahim, A.A. El-Hamalawy, Structural, optical, and electrical characterization of borate glasses doped with SnO2. J. Non Cryst. Solids 494, 59–65 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.04.051

    Article  CAS  Google Scholar 

  21. K. Suzuki, G. Tricot, B. Revel, A. Saitoh, Properties and structure of SnO−SiO2 and SnO−SnF2−SiO2 glasses. J. Non Cryst. SolidsCryst. Solids. (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119706

    Article  Google Scholar 

  22. Y.S. Rammah, M.I. Sayyed, A.S. Abohaswa, H.O. Tekin, FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A Mater. Sci. Process. (2018). https://doi.org/10.1007/s00339-018-2069-4

    Article  Google Scholar 

  23. P.S. Shajira, M.J. Bushiri, B.B. Nair, V.G. Prabhu, Energy band structure investigation of blue and green light emitting Mg doped SnO2 nanostructures synthesized by combustion method. J. Lumin. 145, 425–429 (2014). https://doi.org/10.1016/j.jlumin.2013.07.073

    Article  CAS  Google Scholar 

  24. N. Mazumder, A. Bharati, S. Saha, D. Sen, K.K. Chattopadhyay, Effect of Mg doping on the electrical properties of SnO 2 nanoparticles. Curr. Appl. Phys. 12, 975–982 (2012). https://doi.org/10.1016/j.cap.2011.12.022

    Article  Google Scholar 

  25. H. Yang, H. Fan, J. Duan, Effect of Mg doping on SnO2 energy band and power conversion efficiency of dye-sensitized solar cells. J. Phys. Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/2101/1/012066

    Article  Google Scholar 

  26. S. Li, R. Yan, M. Cai, W. Jiang, M. Zhang, X. Li, Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/Bi2MoO6 S-scheme photocatalyst by carbon dot modification. J. Mater. Sci. Technol. 164, 59–67 (2023). https://doi.org/10.1016/J.JMST.2023.05.009

    Article  CAS  Google Scholar 

  27. S. Li, M. Cai, C. Wang, Y. Liu, Ta3N5/CdS core-shell s-scheme heterojunction nanofibers for efficient photocatalytic removal of antibiotic tetracycline and Cr(VI): performance and mechanism insights. Adv. Fiber Mater. 5, 994–1007 (2023). https://doi.org/10.1007/S42765-022-00253-5/METRICS

    Article  CAS  Google Scholar 

  28. S. Li, C. Wang, K. Dong, P. Zhang, X. Chen, X. Li, MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: performance and mechanism. Chin. J. Catal. 51, 101–112 (2023). https://doi.org/10.1016/S1872-2067(23)64479-1

    Article  CAS  Google Scholar 

  29. S. Li, M. Cai, Y. Liu, C. Wang, K. Lv, X. Chen, S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): intermediate eco-toxicity analysis and mechanistic insights. Chin. J. Catal. 43, 2652–2664 (2022). https://doi.org/10.1016/S1872-2067(22)64106-8

    Article  CAS  Google Scholar 

  30. R.K. Mishra, P.P. Sahay, Zn-doped and undoped SnO 2 nanoparticles: a comparative structural, optical and LPG sensing properties study. Mater. Res. Bull. 47, 4112–4118 (2012). https://doi.org/10.1016/j.materresbull.2012.08.051

    Article  CAS  Google Scholar 

  31. P.P. Sahay, R.K. Mishra, S.N. Pandey, S. Jha, M. Shamsuddin, Structural, dielectric and photoluminescence properties of co-precipitated Zn-doped SnO2 nanoparticles. Curr. Appl. Phys. 13, 479–486 (2013). https://doi.org/10.1016/j.cap.2012.09.010

    Article  Google Scholar 

  32. M. Sabarilakshmi, K. Janaki, Effect of Mg concentration on structural, optical and humidity sensing performance of SnO2 nanoparticles prepared by one step facile route. J. Mater. Sci. Mater. Electron. 28, 8101–8107 (2017). https://doi.org/10.1007/s10854-017-6516-3

    Article  CAS  Google Scholar 

  33. K. Venkateswarlu, M. Sandhyarani, T.A. Nellaippan, N. Rameshbabu, Estimation of crystallite size, lattice strain and dislocation density of nanocrystalline carbonate substituted hydroxyapatite by X-ray peak variance analysis, procedia. Mater. Sci. 5, 212–221 (2014). https://doi.org/10.1016/j.mspro.2014.07.260

    Article  CAS  Google Scholar 

  34. E.T. Seid, F.B. Dejene, Z.N. Urgessa, J.R. Botha, Refluxed sol–gel synthesized ZnO nanopowder with variable zinc precursor concentrations. Appl. Phys. A Mater. Sci. Process. (2018). https://doi.org/10.1007/s00339-018-2148-6

    Article  Google Scholar 

  35. G. Kalpana, J. Varuna, P. Sanjeevi, M. Elango, Influence of Mg concentration on structural, morphological and optical properties of nanoceria. Ceram. Int. 44, 11820–11827 (2018). https://doi.org/10.1016/j.ceramint.2018.03.269

    Article  CAS  Google Scholar 

  36. T. Thilagavathi, D. Venugopal, R. Marnadu, J. Chandrasekaran, T. Alshahrani, M. Shkir, An investigation on microstructural, morphological, optical, photoluminescence and photocatalytic activity of WO3 for photocatalysis applications: an effect of annealing. J. Inorg. Organomet. Polym. Mater. 31, 1217–1230 (2021). https://doi.org/10.1007/s10904-020-01731-2

    Article  CAS  Google Scholar 

  37. M. Kumar, A. Kumar, A.C. Abhyankar, Occurrence of non-equilibrium orthorhombic SnO2 phase and its effect in preferentially grown SnO2 nanowires for CO detection. RSC Adv. 5, 35704–35708 (2015). https://doi.org/10.1039/c4ra15539d

    Article  CAS  Google Scholar 

  38. G. Singh, S.B. Shrivastava, D. Jain, S. Pandya, T. Shripathi, V. Ganesan, Effect of indium dop ing on zinc oxide films prepared by chemical spray pyrolysis technique. Bull. Mater. Sci. 33, 581–587 (2010). https://doi.org/10.1007/s12034-010-0089-6

    Article  CAS  Google Scholar 

  39. S. Asaithambi, P. Sakthivel, M. Karuppaiah, Y. Hayakawa, A. Loganathan, G. Ravi, Improved photocatalytic performance of nanostructured SnO2 via addition of alkaline earth metals (Ba2+, Ca2+ and Mg2+) under visible light irradiation. Appl. Phys. A Mater. Sci. Process. 126, 1–12 (2020). https://doi.org/10.1007/s00339-020-3441-8

    Article  CAS  Google Scholar 

  40. N. Mazumder, D. Sen, S. Saha, U.K. Ghorai, N.S. Das, K.K. Chattopadhyay, Enhanced ultraviolet emission from Mg doped SnO2 nanocrystals at room temperature and its modulation upon H2 annealing. J. Phys. Chem. C 117, 6454–6461 (2013). https://doi.org/10.1021/jp4000329

    Article  CAS  Google Scholar 

  41. S.A. Saleh, A.A. Ibrahim, S.H. Mohamed, Structural and optical properties of nanostructured Fe-doped SnO2. Acta. Phys. Pol. A. 129, 1220–1225 (2016). https://doi.org/10.12693/APhysPolA.129.1220

    Article  CAS  Google Scholar 

  42. A. Diéguez, A. Romano-Rodríguez, A. Vilà, J.R. Morante, The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 90, 1550–1557 (2001). https://doi.org/10.1063/1.1385573

    Article  CAS  Google Scholar 

  43. M.B. Sahana, C. Sudakar, A. Dixit, J.S. Thakur, R. Naik, V.M. Naik, Quantum confinement effects and band gap engineering of SnO 2 nanocrystals in a MgO matrix. Acta Mater. 60, 1072–1078 (2012). https://doi.org/10.1016/j.actamat.2011.11.012

    Article  CAS  Google Scholar 

  44. S.H. Sun, G.W. Meng, G.X. Zhang, T. Gao, B.Y. Geng, L.D. Zhang, J. Zuo, Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders. Chem. Phys. Lett. 376, 103–107 (2003). https://doi.org/10.1016/S0009-2614(03)00965-5

    Article  CAS  Google Scholar 

  45. Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interfaces 6, 2174–2184 (2014). https://doi.org/10.1021/am405301v

    Article  CAS  PubMed  Google Scholar 

  46. X. Wang, X. Wang, Q. Di, H. Zhao, B. Liang, J. Yang, Mutual effects of fluorine dopant and oxygen vacancies on structural and luminescence characteristics of F doped SnO2 nanoparticles. Materials (2017). https://doi.org/10.3390/ma10121398

    Article  PubMed  PubMed Central  Google Scholar 

  47. N. Bhakta, P.K. Chakrabarti, XRD analysis, Raman, AC conductivity and dielectric properties of Co and Mn co-doped SnO 2 nanoparticles. Appl. Phys. A Mater. Sci. Process. (2019). https://doi.org/10.1007/s00339-018-2370-2

    Article  Google Scholar 

  48. J. Singh, V. Verma, R. Kumar, R. Kumar, Influence of Mg 2+ -substitution on the optical band gap energy of Cr 2–x Mg 2–x O 3 nanoparticles. Results Phys. 13, 102106 (2019). https://doi.org/10.1016/j.rinp.2019.02.042

    Article  Google Scholar 

  49. S. Li, C. Wang, Y. Liu, Y. Liu, M. Cai, W. Zhao, X. Duan, S-scheme MIL-101(Fe) octahedrons modified Bi2WO6 microspheres for photocatalytic decontamination of Cr(VI) and tetracycline hydrochloride: synergistic insights, reaction pathways, and toxicity analysis. Chem. Eng. J. 455, 140943 (2023). https://doi.org/10.1016/J.CEJ.2022.140943

    Article  CAS  Google Scholar 

  50. C. Wang, R. Yan, M. Cai, Y. Liu, S. Li, A novel organic/inorganic S-scheme heterostructure of TCPP/Bi12O17Cl2 for boosting photodegradation of tetracycline hydrochloride: kinetic, degradation mechanism, and toxic assessment. Appl. Surf. Sci. 610, 155346 (2023). https://doi.org/10.1016/J.APSUSC.2022.155346

    Article  CAS  Google Scholar 

  51. S. Li, M. Cai, Y. Liu, C. Wang, R. Yan, X. Chen, Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv. Powder Mater. 2, 100073 (2023). https://doi.org/10.1016/J.APMATE.2022.100073

    Article  Google Scholar 

  52. M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination, Chinese. J. Catal. 52, 239–251 (2023). https://doi.org/10.1016/S1872-2067(23)64496-1

    Article  CAS  Google Scholar 

  53. M. Rouchdi, E. Salmani, A. El Hat, C. Nassiri, N. Hassanain, A. Mzerd, Synthesis and magnetic properties of Mg doped SnO2 thin films: experimental and Ab-initio study. Opt. Quantum Electron. 49, 1–13 (2017). https://doi.org/10.1007/s11082-017-0990-y

    Article  CAS  Google Scholar 

  54. M. Karmaoui, A.B. Jorge, P.F. McMillan, A.E. Aliev, R.C. Pullar, J.A. Labrincha, D.M. Tobaldi, One-step synthesis, structure, and band gap properties of SnO2 nanoparticles made by a low temperature nonaqueous sol-gel technique. ACS Omega 3, 13227–13238 (2018). https://doi.org/10.1021/acsomega.8b02122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90, 1773–1787 (2006). https://doi.org/10.1016/j.solmat.2005.11.007

    Article  CAS  Google Scholar 

  56. R. Mani, K. Vivekanandan, K. Vallalperuman, Synthesis of pure and cobalt (Co) doped SnO2 nanoparticles and its structural, optical and photocatalytic properties. J. Mater. Sci. Mater. Electron. 28, 4396–4402 (2017). https://doi.org/10.1007/s10854-016-6067-z

    Article  CAS  Google Scholar 

  57. D. Madhan, M. Sangeetha, P. Rajkumar, Visible light photocatalytic activity of pure and palladium (Pd) doped SnO2 nanoparticles by a one step facile route. J. Mater. Sci. Mater. Electron. 28, 14453–14459 (2017). https://doi.org/10.1007/s10854-017-7307-6

    Article  CAS  Google Scholar 

  58. B. Venugopal, B. Nandan, A. Ayyachamy, V. Balaji, S. Amirthapandian, B.K. Panigrahi, T. Paramasivam, Influence of manganese ions in the band gap of tin oxide nanoparticles: structure, microstructure and optical studies. RSC Adv. 4, 6141–6150 (2014). https://doi.org/10.1039/c3ra46378h

    Article  CAS  Google Scholar 

  59. R. Bargougui, K. Omri, A. Mhemdi, S. Ammar, Synthesis and characterization of SnO2 nanoparticles: effect of hydrolysis rate on the optical properties. Adv. Mater. Lett. 6, 816–819 (2015). https://doi.org/10.5185/amlett.2015.5844

    Article  CAS  Google Scholar 

  60. N. Shanmugam, T. Sathya, G. Viruthagiri, C. Kalyanasundaram, R. Gobi, S. Ragupathy, Photocatalytic degradation of brilliant green using undoped and Zn doped SnO 2 nanoparticles under sunlight irradiation. Appl. Surf. Sci. 360, 283–290 (2016). https://doi.org/10.1016/j.apsusc.2015.11.008

    Article  CAS  Google Scholar 

  61. R. Zulfiqar, Y. Khan, Z. Yuan, J. Iqbal, W. Yang, Z. Wang, J. Ye, Lu, Variation of structural, optical, dielectric and magnetic properties of SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 4625–4636 (2017). https://doi.org/10.1007/s10854-016-6101-1

    Article  CAS  Google Scholar 

  62. K. Ravichandran, K. Thirumurugan, N. Jabena Begum, S. Snega, Investigation of p-type SnO2: Zn films deposited using a simplified spray pyrolysis technique. Superlattices Microstruct. Microstruct. 60, 327–335 (2013). https://doi.org/10.1016/j.spmi.2013.05.006

    Article  CAS  Google Scholar 

  63. R.N. Mariammal, K. Ramachandran, B. Renganathan, D. Sastikumar, On the enhancement of ethanol sensing by CuO modified SnO 2 nanoparticles using fiber-optic sensor. Sens. Actuators B Chem. 169, 199–207 (2012). https://doi.org/10.1016/j.snb.2012.04.067

    Article  CAS  Google Scholar 

  64. M.H. McKetty, The AAPM/RSNA physics tutorial for residents: x-ray attenuation. Radiographics 18, 151–163 (1998). https://doi.org/10.1148/radiographics.18.1.9460114

    Article  CAS  PubMed  Google Scholar 

  65. M.Z. Botelho, R. Künzel, E. Okuno, R.S. Levenhagen, T. Basegio, C.P. Bergmann, X-ray transmission through nanostructured and microstructured CuO materials. Appl. Radiat. Isot. 69, 527–530 (2011). https://doi.org/10.1016/j.apradiso.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  66. S. Iqbal, G. Kotnala, J. Shah, S. Ahmad, Barium ferrite nanoparticles: a highly effective EMI shielding material. Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab02a4

    Article  Google Scholar 

  67. E. Mansouri, A. Mesbahi, R. Malekzadeh, A. Mansouri, Shielding characteristics of nanocomposites for protection against X- and gamma rays in medical applications: effect of particle size, photon energy and nano-particle concentration. Radiat. Environ. Biophys. (2020). https://doi.org/10.1007/s00411-020-00865-8

    Article  PubMed  Google Scholar 

  68. A. Mesbahi, H. Ghiasi, Shielding properties of the ordinary concrete loaded with micro- and nano-particles against neutron and gamma radiations. Appl. Radiat. Isot. 136, 27–31 (2018). https://doi.org/10.1016/j.apradiso.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  69. M. Ghaseminejad, L. Gholamzadeh, F. Ostovari, Investigation of x-ray attenuation property of modification PbO with graphene in epoxy polymer. Mater. Res. Express. (2021). https://doi.org/10.1088/2053-1591/abecea

    Article  Google Scholar 

  70. M. Dejangah, M. Ghojavand, R. Poursalehi, P.R. Gholipour, X-ray attenuation and mechanical properties of tungsten-silicone rubber nanocomposites. Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab1a89

    Article  Google Scholar 

  71. A.M. Reda, A.A. El-Daly, Gamma ray shielding characteristics of Sn-20Bi and Sn-20Bi-0.4Cu lead-free alloys. Prog. Nucl. Energy. Nucl. Energy. 123, 103304 (2020). https://doi.org/10.1016/j.pnucene.2020.103304

    Article  CAS  Google Scholar 

  72. L. Yu, P.L. Yap, A. Santos, D. Tran, D. Losic, Lightweight bismuth titanate (Bi4Ti3O12) nanoparticle-epoxy composite for advanced lead-free x-ray radiation shielding. ACS Appl. Nano Mater. 4, 7471–7478 (2021). https://doi.org/10.1021/acsanm.1c01475

    Article  CAS  Google Scholar 

  73. N.Z. Noor Azman, W.F.I. Wan Mohamed, R.M. Ramli, Synthesis and characterization of electrospun n-ZnO/n-Bi2O3/epoxy-PVA nanofiber mat for low X-ray energy shielding application. Radiat. Phys. Chem.. Phys. Chem. 195, 110102 (2022). https://doi.org/10.1016/j.radphyschem.2022.110102

    Article  CAS  Google Scholar 

  74. M. Dong, X. Xue, S. Liu, H. Yang, Z. Li, M.I. Sayyed, O. Agar, Using iron concentrate in Liaoning Province, China, to prepare material for X-Ray shielding. J. Clean. Prod. 210, 653–659 (2019). https://doi.org/10.1016/j.jclepro.2018.11.038

    Article  CAS  Google Scholar 

  75. N. Şahin, M. Bozkurt, Y. Karabul, M. Kılıç, Z.G. Özdemir, Low cost radiation shielding material for low energy radiation applications: Epoxy/Yahyali Stone composites. Prog. Nucl. Energy. Nucl. Energy. (2021). https://doi.org/10.1016/j.pnucene.2021.103703

    Article  Google Scholar 

  76. L.B.T. La, C. Leatherday, Y.K. Leong, H.P. Watts, L.C. Zhang, Green lightweight lead-free Gd2O3/epoxy nanocomposites with outstanding X-ray attenuation performance. Compos. Sci. Technol. 163, 89–95 (2018). https://doi.org/10.1016/j.compscitech.2018.05.018

    Article  CAS  Google Scholar 

  77. N.Z. Noor Azman, S.A. Siddiqui, M. Ionescu, I.M. Low, Synthesis and characterisation of ion-implanted epoxy composites for X-ray shielding. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 287, 120–123 (2012). https://doi.org/10.1016/j.nimb.2012.06.004

    Article  CAS  Google Scholar 

  78. S.C. Kim, J.R. Choi, B.K. Jeon, Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays. Sci. Rep. 6, 1–7 (2016). https://doi.org/10.1038/srep27721

    Article  CAS  Google Scholar 

  79. B.M. Abunahel, I.S. Mustafa, N.Z. Noor Azman, Characteristics of X-ray attenuation in nano-sized bismuth oxide/epoxy-polyvinyl alcohol (PVA) matrix composites. Appl. Phys. A Mater. Sci. Process. (2018). https://doi.org/10.1007/s00339-018-2254-5

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Vishnu Shankar Dhandapani, School of Mechatronics Engineering, Korea University of Technology and Education, Chungnam 31253, South Korea, Dr. P. Puviarasu, Ceramic Processing Lab, Department of Physics, PSG College of Technology, Coimbatore—641004, India and Dr. A. Saravanakumar, Department of Medical Physics, PSG Institute of Medical Sciences and Research for their support and facilitation during the experimental work.

Author information

Authors and Affiliations

Authors

Contributions

Sanjeevi Palanisami participated in the Conceptualization and Writing of the Original draft. Varuna Jayachandran participated in the Writing and review of the manuscript. Atheek Posha participated in the Editing of the manuscript. Kalpana G participated in the Formal analysis. Elango M participated in the Supervision.

Corresponding author

Correspondence to M. Elango.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 493 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanisami, S., Jayachandran, V., Posha, A. et al. A systematic investigation on the potential X-ray attenuation properties of Mg-doped SnO2 epoxy nanocomposite-based aprons as an alternate for lead commercial aprons. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01314-8

Navigation