Skip to main content
Log in

First-principles study on the properties of Cu-doped in 2H-WSe2

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structural, mechanical, thermodynamic and electronic properties of Cu substitution for W and Se as well as intercalated Cu in 2H-WSe2 have been investigated by first-principles calculation. The stability of the doped structures is inferior than the pure 2H-WSe2 and CuW7Se16 is unstable according to the phonon spectrum. After doping, the elastic moduli decrease for both Cu substitution structures, but increase for the intercalated structure. Cu doping can greatly affect the brittle property because the substituted structures exhibit a ductile property while the intercalated structure still exhibits a brittle property. They are all anisotropic, and CuW7Se16 exhibits the largest degree of anisotropic among them. Cu substitution can effectively reduce the Debye temperature and minimum thermal conductivity, in which CuW7Se16 has the lowest values. Cu doping transformed the semiconductor nature to semimetal. All crystals are non-magnetic and new covalent bonds are formed for Cu-doped structures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. J.R. Lince, P.D. Fleischauer, Crystallinity of rf-sputtered MoS2 films. J. Mater. Res. 2, 827 (1987)

    Article  CAS  Google Scholar 

  2. R.R. Chianelli, Fundamental studies of transition metal sulfide hydrodesulfurization catalysts. Catal. Rev. 26, 361 (1984)

    Article  CAS  Google Scholar 

  3. J. Rouxel, R. Brec, Low-dimensional chalcogenides as secondary cathodic materials: some geometric and electronic aspects. Ann. Rev. Mater. Sci. 16, 137 (1986)

    Article  CAS  Google Scholar 

  4. V. Podzorov, M.E. Gershenson, High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301 (2004)

    Article  CAS  Google Scholar 

  5. M. Kertesz, R. Hoffmann, Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 106, 3453 (1984)

    Article  CAS  Google Scholar 

  6. H.J. Lewerenz, A. Heller, F.J. DiSalvo, Relationship between surface morphology and solar conversion efficiency of tungsten diselenide photoanodes. J. Am. Chem. Soc. 102, 1877 (1980)

    Article  CAS  Google Scholar 

  7. Th. Finteis, M. Hengsberger, Th. Straub, K. Fauth, R. Claessen, P. Auer, P. Steiner, S. Uüfner, P. Blaha, M. Vögt, M. Lux-Stteiner, E. Bucher, Occupied and unoccupied electronic band structure of WSe2. Phys. Rev. B 55, 10400 (1997)

    Article  CAS  Google Scholar 

  8. G. Prasad, O.N. Srivastava, The high-efficiency (17.1%) WSe2 photo electrochemical solar cell. J. Phys. D Appl. Phys. 21, 1028 (1988)

    Article  CAS  Google Scholar 

  9. H.L. Zeng, G.B. Liu, J.F. Dai, Y.J. Yan, B. Zhu, R.C. He, Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608–1611 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  10. C.Y. Zhu, Y.H. Liu, D.F. Duan, T. Cui, Structural transitions of NaAlH4 under high pressure by first-principles calculations. Physica B 406, 1612 (2011)

    Article  CAS  Google Scholar 

  11. F. Peng, D. Chen, X.D. Yang, First-principles calculations on elasticity of OsN2 under pressure. Solid State Commun. 149, 2135 (2009)

    Article  CAS  Google Scholar 

  12. A. Klein, C. Pettenkofer, W. Jaegermann, M. Lux-Steiner, E. Bucher, A photoemission study of barrier and transport properties of the interfaces of Au and Cu with WSe2(0001) surfaces. Surf. Sci. 321, 19 (1994)

    Article  CAS  Google Scholar 

  13. A.H. Reshak, S. Auluck, Electronic and optical properties of 2H-WSe2 intercalated with copper. Phys. Rev. B 68, 195107–195111 (2003)

    Article  Google Scholar 

  14. M.P. Deshpande, P.D. Patel, M.N. Vashi, M.K. Agarwal, Effect of intercalating indium in WSe2 single crystals. J. Cryst. Growth 197, 833 (1999)

    Article  CAS  Google Scholar 

  15. Q.Q. Xin, X. Zhao, T.X. Wang, Electronic and magnetic properties of Mn-doped WSe2 monolayer under strain. Physica E 88, 11 (2017)

    Article  CAS  Google Scholar 

  16. H.Y. Cui, J. Jiang, C.S. Gao, F.K. Dai, J. An, Z.R. Wen, Y.F. Liu, DFT study of Cu-modified and Cu-embedded WSe2 monolayers for cohesive adsorption of NO2, SO2, CO2, and H2S. Appl. Surf. Sci. 583, 152522 (2022)

    Article  CAS  Google Scholar 

  17. B.L. Chauhan, S.A. Bhakhar, P.M. Pataniya, G.K. Solanki, V.M. Patha, Self-powered photodetector based on liquid phase exfoliated Cu–WSe2 nanosheets. Opt. Mater. 133, 112931 (2022)

    Article  CAS  Google Scholar 

  18. F.X. Zhang, X.L. Fan, Y. Hu, Y.Y. An, Z.F. Luo, Magnetic semiconducting and strain-induced semiconducting–metallic transition in Cu-doped single layer WSe2. J. Mater. Sci. 54, 529 (2019)

    Article  CAS  Google Scholar 

  19. S. Sharma, C. Ambrosch-Draxl, M.A. Khan, P. Blaha, S. Auluck, Optical properties and band structure of 2H−WSe2. Phys. Rev. B 60, 8610 (1999)

    Article  CAS  Google Scholar 

  20. A. Gunjan, S. Yamini, S. Vinit, A. Gulzar, S.K. Srivastava, B.L. Ahuja, Electronic structure of layer type tungsten metal dichalcogenides WX2 (X=S, Se) using Compton spectroscopy: theory and experiment. J. Alloys Comp. 470, 452 (2009)

    Article  Google Scholar 

  21. R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. de Groot, A. Wold, Electronic structure of MoSe2, MoS2, and WSe2. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 35, 6195 (1987)

    Article  CAS  Google Scholar 

  22. M.P. Deshpande, G.K. Solanki, M.K. Agarwal, Optical band gap in tungsten diselenide single crystals intercalated by indium. Mate. Lett. 43, 66 (2000)

    Article  CAS  Google Scholar 

  23. W.J. Schutte, J.L. De Boer, F. Jellinek, Crystal structures of tungsten disulfide and diselenide. J. Solid State Chem. 70, 207 (1987)

    Article  CAS  Google Scholar 

  24. T. Bučko, J. Hafner, S. Lebègue, J.G. Ángyán, Improved description of the structure of molecular and layered crystals: Ab initio DFT calculations with Van der Waals corrections. J. Phys. Chem. A 114, 11814 (2010)

    Article  PubMed  Google Scholar 

  25. Y. Le Page, P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from Ab initio calculations of stress. Phys. Rev. B 65, 104104 (2002)

    Article  Google Scholar 

  26. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76, 054115 (2007)

    Article  Google Scholar 

  27. L.P. Feng, N. Li, M.H. Yang, Z.T. Liu, Effect of pressure on elastic, mechanical and electronic properties of WSe2: a first-principles study. Mater Res Bulletin 50, 503 (2014)

    Article  CAS  Google Scholar 

  28. C. Catalin, G.C. David, N. Ngoc, J. David, B. Arun, K. Pawel, Z. Paul, Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351 (2007)

    Article  Google Scholar 

  29. H.C. Cheng, C.F. Yu, W.H. Chen, Physical, mechanical, thermodynamic and electronic characterization of Cu11In9 crystal using first-principles density functional theory calculation. Comp. Mater. Sci. 81, 146 (2014)

    Article  CAS  Google Scholar 

  30. W. Zhou, L.J. Liu, B.L. Li, P. Wu, Structural, elastic and electronic properties of intermetallics in the Pt–Sn system: a density functional investigation. Comp. Mater. Sci. 46, 921 (2009)

    Article  CAS  Google Scholar 

  31. X.D. Zhang, C.H. Ying, Z.J. Li, First-principles calculations of structural stability, elastic, dynamical and thermodynamic properties of SiGe, SiSn, GeSn. Superlattices Microstruct. 52, 459 (2012)

    Article  CAS  Google Scholar 

  32. C.M. Li, S.M. Zeng, Z.Q. Chen, First-principles calculations of elastic and thermodynamic properties of the four main intermetallic phases in Al–Zn–Mg–Cu alloys. Comp. Mater. Sci. 93, 210 (2014)

    Article  CAS  Google Scholar 

  33. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954)

    Article  CAS  Google Scholar 

  34. Z.M. Sun, D. Music, R. Ahuja, J.M. Schneider, Theoretical investigation of the bonding and elastic properties of nanolayered ternary nitrides. Phys. Rev. B 71, 3402 (2005)

    Article  Google Scholar 

  35. M.I. Naher, S.H. Naqib, Structural, elastic, electronic, bonding, and optical properties of topological CaSn3 semimetal. J. Alloys Comp. 829, 154509 (2020)

    Article  CAS  Google Scholar 

  36. X.M. Tao, Z.R. Wang, C.X. Lan, G.L. Xu, Y.F. Ouyang, Y. Du, Exploring phase stability, electronic and mechanical properties of Ce–Pb intermetallic compounds using first-principles calculations. J. Solid State Chem. 237, 385 (2016)

    Article  CAS  Google Scholar 

  37. J.Y. Wu, B. Zhang, Y.Z. Zhan, Ab initio investigation into the structure and properties of Ir–Zr intermetallics for high-temperature structural applications. Comp. Mater. Sci. 131, 146 (2017)

    Article  CAS  Google Scholar 

  38. C.M. Kube, Elastic anisotropy of crystals. AIP Adv. 6, 095209 (2016)

    Article  Google Scholar 

  39. D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992)

    Article  CAS  Google Scholar 

  40. D.R. Clarke, C.G. Levi, Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res. Rev. Mater. Res. 33, 383 (2003)

    Article  CAS  Google Scholar 

  41. Y.H. Duan, Y. Sun, L. Lu, Thermodynamic properties and thermal conductivities of TiAl3-type intermetallics in Al–Pt–Ti system. Comp. Mater. Sci. 68, 229 (2013)

    Article  CAS  Google Scholar 

  42. M. Traving, M. Boehme, L. Kipp, M. Skibowski, Electronic structure of WSe2: a combined photoemission and inverse photoemission study. Phys. Rev. B 55, 10392 (1997)

    Article  CAS  Google Scholar 

  43. Th. Straub, K. Fauth, Th. Finteis, M. Hengsberger, R. Claessen, P. Steiner, S. Hüfner, P. Blaha, Valence-band maximum in the layered semiconductor WSe2: application of constant-energy contour mapping by photoemission. Phys. Rev. B 53, R16152 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51572190) and the Tianjin Science and Technology Program (Grant No. 22KPXMRC00020).

Author information

Authors and Affiliations

Authors

Contributions

Min Liu: Formal analysis, Writing review and editing. Yali Tian: Investigation, Methodology. Lifang Zhang: Methodology, Analysis, Writing review. Yan Zhou: Resources, Supervision. Ping Wu: Resources, Supervision. All authors analyzed and discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Min Liu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Tian, Y., Zhang, L. et al. First-principles study on the properties of Cu-doped in 2H-WSe2. Journal of Materials Research 39, 1300–1312 (2024). https://doi.org/10.1557/s43578-024-01311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-024-01311-x

Keywords

Navigation