Skip to main content
Log in

Opto-electronic and thermoelectric properties of double perovskites Li2CuGaX6 (X = Cl, Br, I) for energy conversion applications: DFT calculations

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Stable and ecologically friendly double perovskites (DPs) emerge as an optimal selection aimed at a wide spectrum of applications encompassing optoelectronics and thermoelectric implementations. The present research uses density functional theory (DFT) probes into the intricate physical properties of DPs Li2CuGaX6 (X = Cl, Br, I), thereby shedding light on its potential advantages for thermal and optoelectronics applications. The tolerance factor and Born stability criteria are carefully computed to ascertain the cubic phase structural stability. The computed values of the direct bandgaps for Li2CuGaCl6 and Li2CuGaBr6 guarantee optimal absorption across the visible and IR spectra. Among all DPs, Li2CuGaCl6 is best for photovoltaic devices. The electrical and thermal conductivities and the Seebeck coefficient, which are fundamental metrics for characterizing transport characteristics, have been scrutinized. Li2CuGaBr6 and Li2CuGaCl6 compounds exhibit noteworthy ZT indices of 0.70 and 0.68, respectively, underscoring their utmost significance in thermoelectric devices.Please confirm the inserted country name is correct for affiliation 5.Yes, Correct Please confirm if the author name is presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name [M.] Given name [Musa] Last name [Saad H.-E.]. Also, kindly confirm the details in the metadata are correct. Yes, correct

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The corresponding author will provide the data generated during the study upon a reasonable request.

Code availability

The corresponding author will provide the data generated during the study upon a reasonable request.

References

  1. H. Zhang, X. Zhu, Y. Tai, J. Zhou, H. Li, Z. Li, H. Lan, Recent advances in nanofiber-based flexible transparent electrodes. Int. J. Extreme Manuf. 5, 32005 (2023)

    Article  Google Scholar 

  2. S. Ye, J. Zhu, S. Zhu, Y. Zhao, M. Li, Z. Huang, J. He, Design strategies for perovskite-type high-entropy oxides with applications in optics. ACS Appl. Mater. Interfaces 15, 47475–47486 (2023)

    Article  CAS  PubMed  Google Scholar 

  3. X. Li, Y. Liu, J. Leng, Large-scale fabrication of superhydrophobic shape memory composite films for efficient anti-icing and de-icing. Sustain. Mater. Technol. 37, 00692 (2023)

    Google Scholar 

  4. T. Yamada et al., Self-assembled perovskite-fluorite oblique nanostructures for adaptive (tunable) electronics. Adv. Mater. 21(13), 1363–1367 (2009)

    Article  CAS  Google Scholar 

  5. J. Lettieri et al., Epitaxial growth of non-c-oriented SrBi2Nb2O9 on (111) SrTiO3. Appl. Phys. Lett. 76(20), 2937–2939 (2000)

    Article  CAS  Google Scholar 

  6. S. Ghosh, S. Dasgupta, Synthesis, characterization and properties of nanocrystalline perovskite cathode materials. Mater. Sci.-Pol. 28(2), 427–438 (2010)

    CAS  Google Scholar 

  7. Q. Zhu, J. Chen, G. Gou, H. Chen, P. Li, Ameliorated longitudinal critically refracted attenuation velocity method for welding residual stress measurement. J. Mater. Process. Technol. 246, 267–275 (2017)

    Article  Google Scholar 

  8. Z. Huang, P. Luo, S. Jia, H. Zheng, Z. Lyu, A sulfur-doped carbon-enhanced Na3V2(PO4)3 nanocomposite for sodium-ion storage. J. Phys. Chem. Solids 167, 110746 (2022)

    Article  CAS  Google Scholar 

  9. X. Li, S. Aftab, A. Abbas, S. Hussain, M. Aslam, F. Kabir, M.Z. Ansari, Advances in mixed 2D and 3D perovskite heterostructure solar cells: a comprehensive review. Nano Energy 118, 108979 (2023)

    Article  CAS  Google Scholar 

  10. J. Burschka et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. Y. Takahashi et al., Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40(20), 5563–5568 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. P. Aymen Nawaz et al., Theoretical investigations of optoelectronic and transport properties of Rb2YInX6 (X = Cl, Br, I) double perovskite materials for solar cell applications. Sol. Energy 231, 586–592 (2022)

    Article  CAS  Google Scholar 

  13. X. Li, S. Aftab, S. Hussain, F. Kabir, A.M.A. Henaish, A.G. Al-Sehemi, Dimensional diversity (0D, 1D, 2D, 3D) in perovskite solar cells: exploring the potential of mix-dimensional integrations. J. Mater. Chem. A 5, 89 (2024)

    Google Scholar 

  14. Y. Wang, J. Zhu, M. Li, G. Shao, H. Wang, R. Zhang, Thermal properties of high-entropy RE-disilicates controlled by high throughput composition design and optimization. Mater. Des. 236, 112485 (2023)

    Article  CAS  Google Scholar 

  15. X. Zhu et al., Lead halide perovskites for photocatalytic organic synthesis. Nat. Commun. 10(1), 1–10 (2019)

    Google Scholar 

  16. J.F. Geisz et al., Building a six-junction inverted metamorphic concentrator solar cell. IEEE J. Photovolt. 8(2), 626–632 (2018)

    Article  Google Scholar 

  17. Z. Li et al., Thermodynamic stability landscape of halide double perovskites via high-throughput computing and machine learning. Adv. Func. Mater. 29(9), 1807280 (2019)

    Article  Google Scholar 

  18. Y.-Y. Zhang et al., Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3. Chin. Phys. Lett. 35(3), 036104 (2018)

    Article  Google Scholar 

  19. M. Wu et al., Promising photovoltaic and solid-state-lighting materials: two-dimensional Ruddlesden-Popper type lead-free halide double perovskites Cs n+ 1 In n/2 Sb n/2 I 3n+ 1 (n= 3) and Cs n+ 1 In n/2 Sb n/2 Cl 3n+ 1/Cs m+ 1 Cu m/2 Bi m/2 Cl 3m+1 (n= 3, m= 1). J. Mater. Chem. C 6(43), 11575–11586 (2018)

    Article  CAS  Google Scholar 

  20. J. Jiang et al., Stabilizing lead-free all-inorganic tin halide perovskites by ion exchange. J. Phys. Chem. C 122(31), 17660–17667 (2018)

    Article  CAS  Google Scholar 

  21. Y. Zhang, X. Liu, M. Song, Z. Qin, Tuning the red-to-green-upconversion luminescence intensity ratio of Na3ScF6: 20% Yb3+, 2% Er3+ particles by changes in size. Materials 16, 2247 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Z.H. Fu, B.J. Yang, M.L. Shan, T. Li, Z.Y. Zhu, C.P. Ma, W. Gao, Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones. Corros. Sci. 164, 108337 (2020)

    Article  CAS  Google Scholar 

  23. I. Muhammad, A. Ali, L. Zhou, W. Zhang, P.K.J. Wong, Vacancy-engineered half-metallicity and magnetic anisotropy in CrSI semiconductor monolayer. J. Alloys Compd. 909, 164797 (2022)

    Article  CAS  Google Scholar 

  24. H. Wang, Z. Huang, X. Zeng, J. Li, Y. Zhang, Q. Hu, Enhanced anticarbonization and electrical performance of epoxy resin via densified spherical boron nitride networks. ACS Appl. Electron. Mater. 5, 3726–3732 (2023)

    Article  CAS  Google Scholar 

  25. T.J. Jacobsson et al., Goldschmidt’s rules and strontium replacement in lead halogen perovskite solar cells: theory and preliminary experiments on CH3NH3SrI3. J. Phys. Chem. C 119(46), 25673–25683 (2015)

    Article  CAS  Google Scholar 

  26. G. Volonakis et al., Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8(4), 772–778 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. M. Manzoor et al., Probing direct bandgap of double perovskites Rb2LiTlX6 (X= Cl, Br) and optoelectronic characteristics for Solar cell applications: DFT calculations. J. Market. Res. 18, 4775–4785 (2022)

    CAS  Google Scholar 

  28. N.P. Mathew, N.R. Kumar, R. Radhakrishnan, First principle study of the structural and optoelectronic properties of direct bandgap double perovskite Cs2AgInCl6. Mater. Today 33, 1252–1256 (2020)

    CAS  Google Scholar 

  29. M. Asghar et al., Tuning of the bandgap of Rb2ScAgX6 (X= Cl, Br, I) double perovskites through halide ion replacement for solar cell applications. Mater. Sci. Semicond. Process. 148, 106819 (2022)

    Article  CAS  Google Scholar 

  30. M.A. Khan et al., Comprehensive investigation of Opto-electronic and transport properties of Cs2ScAgX6 (X= Cl, Br, I) for solar cells and thermoelectric applications. Sol. Energy 225, 122–128 (2021)

    Article  Google Scholar 

  31. F. Aslam, B. Sabir, M. Hassan, Structural, electronic, optical, thermoelectric, and transport properties of indium-based double perovskite halides Cs2InAgX6 (X= Cl, Br, I) for energy applications. Appl. Phys. A 127(2), 1–12 (2021)

    Article  Google Scholar 

  32. Z. Huang, P. Luo, Q. Wu, H. Zheng, Constructing one-dimensional mesoporous carbon nanofibers loaded with NaTi2(PO4)3 nanodots as novel anodes for sodium energy storage. J. Phys. Chem. Solids 161, 110479 (2022)

    Article  CAS  Google Scholar 

  33. M.H. Zhao, C. Zhu, Z. Sun, T. Xia, Y. Han, Y. Zeng, Z. Gao, Y. Gong, X. Wang, J. Hong, W.X. Zhang, Methodological Approach to the High-Pressure Synthesis of Nonmagnetic Li2B4+ B′6+O6 Oxides. Chem. Mater. 34(1), 186–196 (2021)

    Article  Google Scholar 

  34. M. Usman, Q. Yan, Recent advancements in crystalline Pb-free halide double perovskites. Crystals 10, 62 (2020)

    Article  CAS  Google Scholar 

  35. C.J. Bartel et al., New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5(2), 0693 (2019)

    Article  Google Scholar 

  36. A.E. Fedorovskiy, N.A. Drigo, M.K. Nazeeruddin, The role of Goldschmidt’s tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range. Small Methods 4(5), 1900426 (2020)

    Article  CAS  Google Scholar 

  37. S. Zhao et al., First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6 (B= Sb, Bi; X= Cl, Br, I). J. Phys. Chem. Solids 117, 117–121 (2018)

    Article  CAS  Google Scholar 

  38. M. Jamal, S.J. Asadabadi, I. Ahmad, H.R. Aliabad, Elastic constants of cubic crystals. Comput. Mater. Sci. 95, 592–599 (2014)

    Article  CAS  Google Scholar 

  39. B. Yang, H. Wang, M. Zhang, F. Jia, Y. Liu, Z. Lu, Mechanically strong, flexible, and flame-retardant Ti3C2Tx MXene-coated aramid paper with superior electromagnetic interference shielding and electrical heating performance. Chem. Eng. J. 476, 146834 (2023)

    Article  CAS  Google Scholar 

  40. S. Fu, H. Wu, W. He, Q. Li, C. Shan, J. Wang, C. Hu, Conversion of dielectric surface effect into volume effect for high output energy. Adv. Mater. 35, 2302954 (2023)

    Article  CAS  Google Scholar 

  41. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. 65, 349 (1952)

    Article  Google Scholar 

  42. S. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Phil. Mag. J. Sci. 45, 823–843 (1954)

    Article  CAS  Google Scholar 

  43. Y. Tian, Xu. Bo, Z. Zhao, Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract Metal Hard Mater. 33, 93–106 (2012)

    Article  CAS  Google Scholar 

  44. V. Bobrov et al., Kramers-Kronig relations for the dielectric function and the static conductivity of Coulomb systems. EPL (Europhys. Lett.) 90(1), 10003 (2010)

    Article  Google Scholar 

  45. N. Noor et al., The pressure-induced mechanical and optoelectronic behavior of cubic perovskite PbSnO3 via ab-initio investigations. Ceram. Int. 44(12), 13750–13756 (2018)

    Article  CAS  Google Scholar 

  46. Z. Luo, S. Cai, S. Hao, T.P. Bailey, Y. Luo, W. Luo, M.G. Kanatzidis, Extraordinary role of Zn in enhancing thermoelectric performance of Ga-doped n-type PbTe. Energy Environ. Sci. 15, 89 (2021)

    Google Scholar 

  47. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128(5), 2093 (1962)

    Article  CAS  Google Scholar 

  48. Y. Zhang et al., Effect of CaZrO3 on phase structure and electrical properties of KNN-based lead-free ceramics. RSC Adv. 5(25), 19647–19651 (2015)

    Article  CAS  Google Scholar 

  49. C. Jiang, Z. Deng, B. Liu, J. Li, Z. Han, Y. Ma, Y. Ma, Spin–orbit-engineered selective transport of photons in plasmonic nanocircuits with panda-patterned transporters. ACS Photonics 9, 3089–3093 (2022)

    Article  CAS  Google Scholar 

  50. Blaha, P., et al., wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties, 2001. 60.

  51. J.P. Perdew et al., Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008)

    Article  PubMed  Google Scholar 

  52. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    Article  PubMed  Google Scholar 

  53. J. Chen, Z. Zhang, H. Lu, Structure design and properties investigation of Bi2O2Se/graphene van der Waals heterojunction from first-principles study. Surf. Interfaces 33, 102289 (2022)

    Article  CAS  Google Scholar 

  54. P. Wisesa, K.A. McGill, T. Mueller, Efficient generation of generalized Monkhorst-Pack grids through the use of informatics. Phys. Rev. B 93(15), 155109 (2016)

    Article  Google Scholar 

  55. X. Chen, Periodic density functional theory (PDFT) Simulating crystal structures with microporous CHA framework: an accuracy and efficiency study. Inorganics 11, 215 (2023)

    Article  Google Scholar 

  56. G.K. Madsen, D.J. Singh, BoltzTraP A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175(1), 67–71 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Princess Nourah Bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2024R70), Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

The entire team of authors worked on the article. HAA gave an idea about the manuscript and supervised the whole work. NAN and AL performed the DFT calculations and wrote the whole manuscript in collaboration. WT and FA prepared figures and tables for the manuscript.

Corresponding author

Correspondence to N. A. Noor.

Ethics declarations

Conflict of interest

There are no competing interests among the authors in publishing this work.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alburaih, H.A., Tanveer, W., Noor, N.A. et al. Opto-electronic and thermoelectric properties of double perovskites Li2CuGaX6 (X = Cl, Br, I) for energy conversion applications: DFT calculations. Journal of Materials Research 39, 1207–1216 (2024). https://doi.org/10.1557/s43578-024-01303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-024-01303-x

Keywords

Navigation