Skip to main content
Log in

Preparation and sodium-ion storage performance of bimetallic oxygen sulfide composite hollow carbon fibers

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In sodium-ion storage technologies, the high radius of Na+ causes slow diffusion kinetics, and the repeated sodiation/desodiation will damage the electrode structure. Herein, the iron-tin oxysulfide (FSOS) is confined in the N-doped hollow carbon nanofibers through a coaxial electrospinning. FSOS with multiple cationic valences can promote the adsorption and redox reaction of Na+, which facilitate electrolyte penetration. For anode material in sodium-ion batteries (SIBs), FSOS@NSC offers competitive cycling performance (246 mA h g−1 after 1500 cycles with capacity retention of 80.3%) as well as high-rate capability (242 mA h g−1), and a sodium-ion capacitor device (SICs) with a large operating voltage window by using FSOS@NSC as the anode (0.01–4.0 V). FSOS@NSC//AC hybrid system delivers capacity retention of 74.6% at 20 A g−1 after 2000 cycles and high energy density (100.5 W h kg−1). This research offers a method for creating a new generation by anion regulation with partial sulfuration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. S. Geng, T. Zhou, M. Jia, X. Shen, P. Gao, S. Tian, P. Zhou, B. Liu, J. Zhou, S. Zhuo, F. Li, Carbon-coated WS2 nanosheets supported on carbon nanofibers for high-rate potassium-ion capacitors. Energy Environ. Sci. 14(5), 3184–3193 (2021). https://doi.org/10.1039/d1ee00193k

    Article  CAS  Google Scholar 

  2. Y. Ma, L. Zhang, Z. Yan, B. Cheng, J. Yu, T. Liu, Sandwich-shell structured CoMn2O4/C hollow nanospheres for performance-enhanced sodium-ion hybrid supercapacitor. Adv. Energy Mater. 11(12), 3375–3379 (2022). https://doi.org/10.1002/aenm.202103820

    Article  CAS  Google Scholar 

  3. Q. Tang, Q. Jiang, T. Wu, T. Wu, Z. Ding, J. Wu, H. Yu, K. Huang, Binary iron sulfide as a low-cost and high-performance anode for lithium-/sodium-ion batteries. ACS Appl. Mater. Interfaces 12(47), 52888–52898 (2020). https://doi.org/10.1021/acsami.0c17728

    Article  CAS  PubMed  Google Scholar 

  4. C. Chen, Y. Yang, X. Tang, R. Qiu, S. Wang, G. Cao, M. Zhang, Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na(+) /K(+) batteries in a wide temperature range. Small 15(10), e1804740 (2019). https://doi.org/10.1002/smll.201804740

    Article  CAS  PubMed  Google Scholar 

  5. B. Chen, J. Ding, X. Bai, H. Zhang, M. Liang, S. Zhu, C. Shi, L. Ma, E. Liu, N. Zhao, F. He, W. Zhou, C. He, Engineering pocket-like graphene-shell encapsulated FeS2: inhibiting polysulfides shuttle effect in potassium-ion batteries. Adv. Funct. Mater. 32(14), 2109899 (2021). https://doi.org/10.1002/adfm.202109899

    Article  CAS  Google Scholar 

  6. J. Wang, X. Yue, X. Cao, Z. Liu, A.M. Patil, J. Wang, X. Hao, A. Abudula, G. Guan, Metal organic frameworks derived CoS2/NiS2 heterostructure toward high-performance sodium storage anode materials. Chem. Eng. J. 431(4), 134091 (2022). https://doi.org/10.1016/j.cej.2021.134091

    Article  CAS  Google Scholar 

  7. H. Li, Y. He, Y. Dai, Y. Ren, T. Gao, G. Zhou, Bimetallic SnS2/NiS2@S-rGO nanocomposite with hierarchical flower-like architecture for superior high rate and ultra-stable half/full sodium-ion batteries. Chem. Eng. J. 427, 131784 (2022). https://doi.org/10.1016/j.cej.2021.131784

    Article  CAS  Google Scholar 

  8. Z. Song, G. Wang, Y. Chen, Q. Chang, Y. Lu, Z. Wen, Construction of hierarchical NiS@C/rGO heterostructures for enhanced sodium storage. Chem. Eng. J. 435, 134633 (2022). https://doi.org/10.1016/j.cej.2022.134633

    Article  CAS  Google Scholar 

  9. H. Li, L. Xu, H. Sitinamaluwa, K. Wasalathilake, C. Yan, Coating Fe2O3 with graphene oxide for high-performance sodium-ion battery anode. Compos. Commun. 1, 48–53 (2016). https://doi.org/10.1016/j.coco.2016.09.004

    Article  Google Scholar 

  10. Q. Pan, Z. Tong, Y. Su, S. Qin, Y. Tang, Energy storage mechanism, challenge and design strategies of metal sulfides for rechargeable sodium/potassium-ion batteries. Adv. Funct. Mater. 31(37), 2103912 (2021). https://doi.org/10.1002/adfm.202103912

    Article  CAS  Google Scholar 

  11. Y. Wu, J. Cheng, Z. Liang, Y. Tang, T. Qiu, S. Gao, R. Zhong, R. Zou, Puffing up hollow carbon nanofibers with high-energy metal-organic frameworks for capacitive-dominated potassium-ion storage. Small 18(5), 2105767 (2021). https://doi.org/10.1002/smll.202105767

    Article  CAS  Google Scholar 

  12. L. Zhang, H.B. Wu, X.W. Lou, Metal-organic-frameworks-derived general formation of hollow structures with high complexity. J. Am. Chem. Soc. 135(29), 10664–10672 (2013). https://doi.org/10.1021/ja401727n

    Article  CAS  PubMed  Google Scholar 

  13. X. Yang, Y. Li, P. Zhang, L. Sun, X. Ren, H. Mi, Hierarchical hollow carbon spheres: novel synthesis strategy, pore structure engineering and application for micro-supercapacitor. Carbon 157, 70–79 (2020). https://doi.org/10.1016/j.carbon.2019.10.008

    Article  CAS  Google Scholar 

  14. X. Shi, Z. Xu, C. Han, R. Shi, X. Wu, B. Lu, J. Zhou, S. Liang, Highly dispersed cobalt nanoparticles embedded in nitrogen-doped graphitized carbon for fast and durable potassium storage. Nano-Micro Lett. 13(1), 21 (2020). https://doi.org/10.1007/s40820-020-00534-x

    Article  CAS  ADS  Google Scholar 

  15. Z. He, H. Guo, J.D. LaCoste, R.A. Cook, B. Hussey, X. Zhang, D.D. Gang, J. Hao, L. Chen, P. Cooke, H. Yan, L. Fei, Directly embedded Ni3S2/Co9S8@S-doped carbon nanofiber networks as a free-standing anode for lithium-ion batteries. Sustain. Energy Fuels. 5(1), 166–174 (2021). https://doi.org/10.1039/d0se00320d

    Article  CAS  Google Scholar 

  16. T. Liu, J. Serrano, J. Elliott, X. Yang, W. Cathcart, Z. Wang, Z. He, G. Liu, Exceptional capacitive deionization rate and capacity by block copolymer–based porous carbon fibers. Sci. Adv. 6(16), eaaz0906 (2020). https://doi.org/10.1126/sciadv.aaz0906

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  17. J. Li, W. Qin, J. Xie, R. Lin, Z. Wang, L. Pan, W. Mai, Rational design of MoS2-reduced graphene oxide sponges as free-standing anodes for sodium-ion batteries. Chem. Eng. J. 332, 260–266 (2018). https://doi.org/10.1016/j.cej.2017.09.088

    Article  CAS  Google Scholar 

  18. X. Yang, F. Xiao, S. Wang, J. Liu, M.K.H. Leung, D.Y.W. Yu, A.L. Rogach, Confined annealing-induced transformation of tin oxide into sulfide for sodium storage applications. J. Mater. Chem. A 7(19), 11877–11885 (2019). https://doi.org/10.1039/c9ta02660f

    Article  CAS  Google Scholar 

  19. Z. Ren, J. Wen, W. Liu, X. Jiang, Y. Dong, X. Guo, Q. Zhao, G. Ji, R. Wang, N. Hu, B. Qu, C. Xu, Rational design of layered SnS(2) on ultralight graphene fiber fabrics as binder-free anodes for enhanced practical capacity of sodium-ion batteries. Nano-Micro Lett. 11(1), 66 (2019). https://doi.org/10.1007/s40820-019-0297-6

    Article  ADS  Google Scholar 

  20. J. Wang, J. Fang, H. Zhao, Z. Zhang, Z. Li, Raspberry-like hierarchical structure FeS2 decorated by dual-carbon framework as high-performance cathode for rechargeable lithium batteries. Carbon 171, 171–178 (2021). https://doi.org/10.1016/j.carbon.2020.09.006

    Article  CAS  Google Scholar 

  21. S. Wang, H. Zhao, S. Lv, H. Jiang, Y. Shao, Y. Wu, X. Hao, Y. Lei, Insight into nickel-cobalt oxysulfide nanowires as advanced anode for sodium-ion capacitors. Adv. Energy Mater. 11(18), 202100408 (2021). https://doi.org/10.1002/aenm.202100408

    Article  CAS  Google Scholar 

  22. S. Huang, M. Wang, P. Jia, B. Wang, J. Zhang, Y. Zhao, N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage. Energy Storage Mater. 20, 225–233 (2019). https://doi.org/10.1016/j.ensm.2018.11.024

    Article  Google Scholar 

  23. S. Wang, S. Lv, G. Wang, K. Feng, S. Xie, G. Yuan, K. Nie, M. Sha, X. Sun, L. Zhang, Construction of novel bimetallic oxyphosphide as advanced anode for potassium ion hybrid capacitor. Adv. Sci. (Weinh) 9(9), 2105193 (2022). https://doi.org/10.1002/advs.202105193

    Article  CAS  PubMed  Google Scholar 

  24. J. Zheng, S. Ju, G. Xia, H. Pan, X. Yu, Co-construction of solid solution phase and void space in yolk-shell Fe0.4Co0.6S@N-doped carbon to enhance cycling capacity and rate capability for aluminum-ion batteries. ACS Appl. Mater. Interfaces 14(6), 8076–8085 (2022). https://doi.org/10.1021/acsami.1c24510

    Article  CAS  PubMed  Google Scholar 

  25. F. Xiao, X. Yang, H. Wang, J. Xu, Y. Liu, D.Y.W. Yu, A.L. Rogach, Covalent encapsulation of sulfur in a MOF-derived S, N-doped porous carbon host realized via the vapor-infiltration method results in enhanced sodium-sulfur battery performance. Adv. Energy Mater. 10(23), 2000931 (2020). https://doi.org/10.1002/aenm.202000931

    Article  CAS  Google Scholar 

  26. B. Sun, Q. Zhang, H. Xiang, F. Han, W. Tang, G. Yuan, Y. Cong, C. Fan, A. Westwood, X. Li, Enhanced active sulfur in soft carbon via synergistic doping effect for ultra–stable lithium–ion batteries. Energy Storage Mater. 24, 450–457 (2020). https://doi.org/10.1016/j.ensm.2019.07.014

    Article  Google Scholar 

  27. Y. Zhang, D. Yan, Z. Liu, Y. Ye, F. Cheng, H. Li, A.H. Lu, A SnOx quantum dots embedded carbon nanocage network with ultrahigh li storage capacity. ACS Nano 15(4), 7021–7031 (2021). https://doi.org/10.1021/acsnano.1c00088

    Article  CAS  PubMed  Google Scholar 

  28. K. Jiang, Y. Niu, D. Fang, L. Zhang, C. Wang, sulfur incorporation in hierarchical TiO2 nanosheet/carbon nanotube hybrids for improved lithium storage performance. ChemElectroChem 7(13), 2905–2916 (2020). https://doi.org/10.1002/celc.202000714

    Article  CAS  Google Scholar 

  29. J. Li, Z. Li, S. Tang, J. Hao, T. Wang, C. Wang, L. Pan, Improving the sodium storage performance of carbonaceous anode: Synergistic coupling of pore structure and ordered domain engineering. Carbon 203, 469–478 (2023). https://doi.org/10.1016/j.carbon.2022.12.014

    Article  CAS  Google Scholar 

  30. Y. Sun, H. Wang, W. Wei, Y. Zheng, L. Tao, Y. Wang, M. Huang, J. Shi, Z.C. Shi, D. Mitlin, Sulfur-rich graphene nanoboxes with ultra-high potassiation capacity at fast charge: storage mechanisms and device performance. ACS Nano 15(1), 1652–1665 (2021). https://doi.org/10.1021/acsnano.0c09290

    Article  CAS  PubMed  Google Scholar 

  31. Q. Zhang, Y. Zeng, C. Ling, L. Wang, Z. Wang, T.E. Fan, H. Wang, J. Xiao, X. Li, B. Qu, Boosting fast sodium ion storage by synergistic effect of heterointerface engineering and nitrogen doping porous carbon nanofibers. Small 18(13), 2107514 (2022). https://doi.org/10.1002/smll.202107514

    Article  CAS  Google Scholar 

  32. J. Ni, M. Sun, L. Li, Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-in electric field. Adv. Mater. 31(41), 1902603 (2019). https://doi.org/10.1002/adma.201902603

    Article  CAS  Google Scholar 

  33. C. Dong, J. Liang, Y. He, C. Li, X. Chen, L. Guo, F. Tian, Y. Qian, L. Xu, NiS1.03 hollow spheres and cages as superhigh rate capacity and stable anode materials for half/full sodium-ion batteries. ACS Nano 12(8), 8277–8287 (2018). https://doi.org/10.1021/acsnano.8b03541

    Article  CAS  PubMed  Google Scholar 

  34. W. Chen, K. Song, L. Mi, X. Feng, J. Zhang, S. Cui, C. Liu, Synergistic effect induced ultrafine SnO2/graphene nanocomposite as an advanced lithium/sodium-ion batteries anode. J. Mater. Chem. A 5(20), 10027–10038 (2017). https://doi.org/10.1039/c7ta01634d

    Article  CAS  Google Scholar 

  35. Y. Cui, W. Feng, D. Wang, Y. Wang, W. Liu, H. Wang, Y. Jin, Y. Yan, H. Hu, M. Wu, Q. Xue, Z. Yan, W. Xing, Water-soluble salt template-assisted anchor of hollow FeS2 nanoparticle inside 3D Carbon skeleton to achieve fast potassium-ion storage. Adv. Energy Mater. 11(33), 2101343 (2021). https://doi.org/10.1002/aenm.202101343

    Article  CAS  Google Scholar 

  36. L. Tao, Y. Yang, H. Wang, Y. Zheng, H. Hao, W. Song, J. Shi, M. Huang, D. Mitlin, Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms. Energy Storage Mater. 27, 212–225 (2020). https://doi.org/10.1016/j.ensm.2020.02.004

    Article  Google Scholar 

  37. Y. Wang, J. Liu, X. Chen, B. Kang, H.-E. Wang, P. Xiong, Q. Chen, M. Wei, N. Li, Q. Qian, L. Zeng, Structural engineering of tin sulfides anchored on nitrogen/phosphorus dual-doped carbon nanofibres in sodium/potassium-ion batteries. Carbon 189, 46–56 (2022). https://doi.org/10.1016/j.carbon.2021.12.051

    Article  CAS  Google Scholar 

  38. W. Li, Z. Gong, X. Yan, D. Wang, J. Liu, X. Guo, Z. Zhang, G. Li, In situ engineered ZnS–FeS heterostructures in N-doped carbon nanocages accelerating polysulfide redox kinetics for lithium sulfur batteries. J. Mater. Chem. A 8(1), 433–442 (2020). https://doi.org/10.1039/c9ta11451c

    Article  CAS  Google Scholar 

  39. F. Li, G. Luo, W. Chen, Y. Chen, Y. Fang, M. Zheng, X. Yu, Rational design and controllable synthesis of multishelled Fe2O3@SnO2@C nanotubes as advanced anode material for lithium-/sodium-ion batteries. ACS Appl. Mater. Interfaces 11(40), 36949–36959 (2019). https://doi.org/10.1021/acsami.9b12012

    Article  CAS  PubMed  Google Scholar 

  40. Z. Liang, H. Tu, K. Zhang, Z. Kong, M. Huang, D. Xu, S. Liu, Y. Wu, X. Hao, Self-supporting NiSe2@BCNNTs electrode for high-performance sodium ion batteries. Chem. Eng. J. 437, 135421 (2022). https://doi.org/10.1016/j.cej.2022.135421

    Article  CAS  Google Scholar 

  41. Y. Zhang, J. Li, L. Ma, H. Li, X. Xu, X. Liu, T. Lu, L. Pan, Insights into the storage mechanism of 3D nanoflower-like V3S4 anode in sodium-ion batteries. Chem. Eng. J. 427, 130936 (2022). https://doi.org/10.1016/j.cej.2021.130936

    Article  CAS  Google Scholar 

  42. S. Zhang, L. Sun, L. Yu, G. Zhai, L. Li, X. Liu, H. Wang, Core-Shell CoSe2 /WSe2 Heterostructures@Carbon in porous carbon nanosheets as advanced anode for sodium ion batteries. Small 17(49), 2103005 (2021). https://doi.org/10.1002/smll.202103005

    Article  CAS  Google Scholar 

  43. J. Li, Z. Li, S. Tang, T. Wang, K. Wang, L. Pan, C. Wang, Sodium titanium phosphate nanocube decorated on tablet-like carbon for robust sodium storage performance at low temperature. J. Colloid Interface Sci. 629, 121–132 (2023). https://doi.org/10.1016/j.jcis.2022.09.059

    Article  CAS  ADS  PubMed  Google Scholar 

  44. Y. Jiang, Y. Shen, J. Dong, S. Tan, Q. Wei, F. Xiong, Q. Li, X. Liao, Z. Liu, Q. An, L. Mai, Surface pseudocapacitive mechanism of molybdenum phosphide for high-energy and high-power sodium-ion capacitors. Adv. Energy Mater. 9(27), 1900967 (2019). https://doi.org/10.1002/aenm.201900967

    Article  CAS  Google Scholar 

  45. K. Yao, Z. Xu, J. Huang, M. Ma, L. Fu, X. Shen, J. Li, M. Fu, Bundled defect-rich MoS2 for a high-rate and long-life sodium-ion battery: achieving 3D diffusion of sodium ion by vacancies to improve kinetics. Small 15(12), 1805405 (2019). https://doi.org/10.1002/smll.201805405

    Article  CAS  Google Scholar 

  46. Y. Hu, Z. Li, Z. Hu, L. Wang, R. Ma, J. Wang, Engineering hierarchical CoO nanospheres wrapped by graphene via controllable sulfur doping for superior li ion storage. Small 16(42), 2003643 (2020). https://doi.org/10.1002/smll.202003643

    Article  CAS  Google Scholar 

  47. S. Chu, M. Yu, B. Liu, T. Lu, Z. Hou, Y. Qu, F. Zeng, WO3-x@W2N heterogeneous nanorods cross-linked in carbon nanosheets for electrochemical potassium storage. Chem. Eng. J. 435, 135188 (2022). https://doi.org/10.1016/j.cej.2022.135188

    Article  CAS  Google Scholar 

  48. D. Luo, C. Ma, J. Hou, Z. Zhang, R. Feng, L. Yang, X. Zhang, H. Lu, J. Liu, Y. Li, Y. Zhang, X. Wang, Z. Chen, Integrating nanoreactor with O-Nb–C heterointerface design and defects engineering toward high-efficiency and longevous sodium ion battery. Adv. Energy Mater. 12(18), 2103716 (2022). https://doi.org/10.1002/aenm.202103716

    Article  CAS  Google Scholar 

  49. Y. Zhao, P. Zhang, J. Liang, X. Xia, L. Ren, L. Song, W. Liu, X. Sun, Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Storage Mater. 47, 424–433 (2022). https://doi.org/10.1016/j.ensm.2022.02.030

    Article  Google Scholar 

  50. G. Wang, S. Wang, X. Sun, Y. Liu, P. Nie, L. Hou, L. Chang, C. Yuan, Metallic Mo2C quantum dots confined in functional carbon nanofiber films toward efficient sodium storage: heterogeneous interface engineering and charge-storage mechanism. ACS Appl. Energy Mater. 5(1), 1114–1125 (2021). https://doi.org/10.1021/acsaem.1c03477

    Article  CAS  Google Scholar 

  51. P. Cai, R. Momen, Y. Tian, L. Yang, K. Zou, A. Massoudi, W. Deng, H. Hou, G. Zou, X. Ji, Advanced pre-diagnosis method of biomass intermediates toward high energy dual-carbon potassium-ion capacitor. Adv. Energy Mater. 12(5), 2103221 (2021). https://doi.org/10.1002/aenm.202103221

    Article  CAS  Google Scholar 

  52. L. She, F. Zhang, C. Jia, L. Kang, Q. Li, X. He, J. Sun, Z. Lei, Z.-H. Liu, Ti2Nb2O9/graphene hybrid anode with superior rate capability for high-energy-density sodium-ion capacitors. J. Alloys Compd. 860, 158431 (2021). https://doi.org/10.1016/j.jallcom.2020.158431

    Article  CAS  Google Scholar 

  53. C. Jiang, W. Zhou, Z. Zou, Nitrogen and oxygen co-doped mesoporous carbon spheres as capacitive anode for high performance sodium-ion capacitors. J. Mater. Sci. Technol. 83, 188–195 (2021). https://doi.org/10.1016/j.jmst.2020.12.039

    Article  CAS  Google Scholar 

  54. Z. Liu, X. Zhang, D. Huang, B. Gao, C. Ni, L. Wang, Y. Ren, J. Wang, H. Gou, G. Wang, Confined seeds derived sodium titanate/graphene composite with synergistic storage ability toward high performance sodium ion capacitors. Chem. Eng. J. 379, 122418 (2020). https://doi.org/10.1016/j.cej.2019.122418

    Article  CAS  Google Scholar 

  55. F. Yin, P. Yang, W. Yuan, A. Semencha, C. Zhang, P. Ji, G. Wang, Flexible MoSe2/MXene films for Li/Na-ion hybrid capacitors. J. Power. Sources 488, 229452 (2021). https://doi.org/10.1016/j.jpowsour.2021.229452

    Article  CAS  Google Scholar 

  56. S. Wei, C. Wang, S. Chen, P. Zhang, K. Zhu, C. Wu, P. Song, W. Wen, L. Song, Dial the mechanism switch of VN from conversion to intercalation toward long cycling sodium-ion battery. Adv. Energy Mater. 10(12), 1903712 (2020). https://doi.org/10.1002/aenm.201903712

    Article  CAS  Google Scholar 

  57. C. Liu, M. Zhang, X. Zhang, B. Wan, X. Li, H. Gou, Y. Wang, F. Yin, G. Wang, 2D Sandwiched nano heterostructures endow MoSe(2) /TiO(2-) (x)/graphene with high rate and durability for sodium ion capacitor and its solid electrolyte interphase dependent sodiation/desodiation mechanism. Small 16(48), 2004457 (2020). https://doi.org/10.1002/smll.202004457

    Article  CAS  Google Scholar 

  58. J. Qin, H.M.K. Sari, X. Wang, H. Yang, J. Zhang, X. Li, Controlled design of metal oxide-based (Mn2+/Nb5+) anodes for superior sodium-ion hybrid supercapacitors: Synergistic mechanisms of hybrid ion storage. Nano Energy 71, 104594 (2020). https://doi.org/10.1016/j.nanoen.2020.104594

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for funds from Natural Science Foundation of Shandong Province under Grant No. ZR2022ME131.

Funding

This study was funded by Natural Science Foundation of Shandong Province under Grant No. ZR2022ME131.

Author information

Authors and Affiliations

Authors

Contributions

YL contributed toward conceptualization, investigation, methodology, formal analysis, and writing –original draft. ZH contributed toward methodology, formal analysis, visualization, and data curation. DH contributed toward investigation, data curation, and visualization. JS contributed toward supervision, validation, resources, funding acquisition, and writing—review & editing. HW contributed toward visualization, supervision, and resources.

Corresponding author

Correspondence to Jing Shi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 155938 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., He, Z., Han, D. et al. Preparation and sodium-ion storage performance of bimetallic oxygen sulfide composite hollow carbon fibers. Journal of Materials Research 39, 702–715 (2024). https://doi.org/10.1557/s43578-023-01261-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01261-w

Keywords

Navigation