Skip to main content

Advertisement

Log in

Nitrogen and sulfur co-doped mesoporous hollow carbon spheres for high rate sodium ion storage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sodium-ion batteries (SIBs) exhibit an similar storage mechanism to lithium ion batteries (LIBs). Since lithium is costly and sodium is abundant on earth, SIBs have potential to replace LIBs in many applications, especially large-scale energy storage. Carbonaceous materials have special advantages for sodium ion storage, including low cost, high capacity and high conductiviy. However, the storage properties of carbonaceous materials are expected to be improved to meet the development of SIBs. Structure design and heteroatoms doping are two effective approaches to enhance the capacity and rate performance of carbonaceous materials for sodium storage. In this paper, nitrogen and sulfur co-doped mesoporous hollow carbon spheres (NSHCSs) are synthesized through a facile pyrolysis process, using ionic liquid [EMIm]HSO4 as the heteroatom source and phenolic resin as the carbon source. Owing to the hollow structure and element co-doping, the NSHCSs possess high surface area, abundant defects and enlarged interlayer spacing. The electrochemical measurements demonstrate the NSHCSs possess excellent sodium storage properties, with reversible capacities of 245.8, 229.6, 197.9, 169.7, 150.5, 123.0, and 86.2 mAh g−1 at 0.1, 0.2, 0.5, 1, 2, 5, and 10 A g−1, respectively. The NSHCSs also display superior capacity retention, with a capacity of 124.7 mAh g−1 after 900 cycles at a high rate of 5 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: state of the art and future perspectives. Renew. Sustain. Energy Rev 89, 292–308 (2018). https://doi.org/10.1016/j.rser.2018.03.002

    Article  Google Scholar 

  2. S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Reaction mechanisms of layered Lithium-rich cathode materials for high-energy Lithium-ion batteries. Angew Chem. Int. Ed. Engl. 60(5), 2208–2220 (2021). https://doi.org/10.1002/anie.202000262

    Article  CAS  Google Scholar 

  3. J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g

    Article  CAS  Google Scholar 

  4. H. Zhang, Y. Huang, H. Ming, G. Cao, W. Zhang, J. Ming, R. Chen, Recent advances in nanostructured carbon for sodium-ion batteries. J. Mater. Chem. A 8(4), 1604–1630 (2020). https://doi.org/10.1039/c9ta09984k

    Article  CAS  Google Scholar 

  5. N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014). https://doi.org/10.1021/cr500192f

    Article  CAS  Google Scholar 

  6. L. Wang, B. Wang, G. Liu, T. Liu, T. Gao, D. Wang, Carbon nanotube decorated NaTi2(PO4)3/C nanocomposite for a high-rate and low-temperature sodium-ion battery anode. RSC Adv 6(74), 70277–70283 (2016). https://doi.org/10.1039/c6ra11042h

    Article  CAS  Google Scholar 

  7. C. Yang, S. Xin, L. Mai, Y. You, Materials design for high-safety sodium-ion battery. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202000974

    Article  Google Scholar 

  8. M.D. Slater, D. Kim, E. Lee, C.S. Johnson, S.-I. Batteries, Adv. Funct. Mater 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691

    Article  CAS  Google Scholar 

  9. E. Lee, D.E. Brown, E.E. Alp, Y. Ren, J. Lu, J.-J. Woo, C.S. Johnson, New Insights into the performance degradation of Fe-Based layered Oxides in Sodium-Ion Batteries: instability of Fe3+/Fe4 + redox in α-NaFeO2. Chem. Mat. 27(19), 6755–6764 (2015). https://doi.org/10.1021/acs.chemmater.5b02918

    Article  CAS  Google Scholar 

  10. M.Y.S.J. Barker, J.L. Swoyer, A. Sodium-Ion Cell based on the Fluorophosphate compound NaVPO4F, Electrochem. Solid State Lett. 6(1) (2003) 1–4.https://doi.org/10.1149/1.1523691

    Article  CAS  Google Scholar 

  11. K. Kubota, T. Asari, H. Yoshida, N. Yaabuuchi, H. Shiiba, M. Nakayama, S. Komaba, Understanding the structural evolution and redox mechanism of a NaFeO2-NaCoO2Solid solution for Sodium-Ion Batteries. Adv. Funct. Mater 26(33), 6047–6059 (2016). https://doi.org/10.1002/adfm.201601292

    Article  CAS  Google Scholar 

  12. D.D. Yuan, Y.X. Wang, Y.L. Cao, X.P. Ai, H.X. Yang, Improved Electrochemical Performance of Fe-Substituted NaNi0.5Mn0.5O2 cathode materials for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 7(16), 8585–8591 (2015). https://doi.org/10.1021/acsami.5b00594

    Article  CAS  Google Scholar 

  13. J. Sottmann, F.L.M. Bernal, K.V. Yusenko, M. Herrmann, H. Emerich, D.S. Wragg, S. Margadonna, In operando Synchrotron XRD/XAS Investigation of Sodium insertion into the prussian Blue Analogue Cathode Material na 1.32 Mn[Fe(CN) 6 ] 0.83 · z H 2 O. Electrochim. Acta 200, 305–313 (2016). https://doi.org/10.1016/j.electacta.2016.03.131

    Article  CAS  Google Scholar 

  14. S. Zhao, Z. Guo, J. Yang, C. Wang, B. Sun, G. Wang, Nanoengineering of Advanced Carbon materials for Sodium-Ion Batteries. Small 17(48), e2007431 (2021). https://doi.org/10.1002/smll.202007431

    Article  CAS  Google Scholar 

  15. X. Xie, S. Wang, K. Kretschmer, G. Wang, Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries. J. Colloid Interface Sci. 499, 17–32 (2017). https://doi.org/10.1016/j.jcis.2017.03.077

    Article  CAS  Google Scholar 

  16. K. Tang, L. Fu, R.J. White, L. Yu, M.-M. Titirici, M. Antonietti, J. Maier, Hollow Carbon Nanospheres with Superior Rate Capability for Sodium-Based batteries. Adv. Energy Mater. 2(7), 873–877 (2012). https://doi.org/10.1002/aenm.201100691

    Article  CAS  Google Scholar 

  17. X. Li, X. Hu, L. Zhou, R. Wen, X. Xu, S. Chou, L. Chen, A.-M. Cao, S. Dou, A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries. J. Mater. Chem. A 7(19), 11976–11984 (2019). https://doi.org/10.1039/c9ta01615e

    Article  CAS  Google Scholar 

  18. Z. Zhang, Y. Huang, X. Li, S. Zhang, Q. Jia, T. Li, Hollow carbon nanocages toward long cycle lifespan lithium/sodium-ion half/full batteries. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.129827

    Article  Google Scholar 

  19. X. Xu, H. Zeng, D. Han, K. Qiao, W. Xing, M.J. Rood, Z. Yan, Nitrogen and Sulfur Co-Doped Graphene Nanosheets to improve Anode materials for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 10(43), 37172–37180 (2018). https://doi.org/10.1021/acsami.8b15940

    Article  CAS  Google Scholar 

  20. Z. Chen, H. Duan, Z. Xu, C. Chen, Y. Yan, S. Wu, Fast sodium storage with ultralong cycle life for nitrogen doped hollow carbon nanofibers anode at elevated temperature. Adv. Mater. Interfaces (2020). https://doi.org/10.1002/admi.201901922

    Article  Google Scholar 

  21. H. An, Y. Li, Y. Gao, C. Cao, J. Han, Y. Feng, W. Feng, Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries. Carbon 116, 338–346 (2017). https://doi.org/10.1016/j.carbon.2017.01.101

    Article  CAS  Google Scholar 

  22. F. Yang, Z. Zhang, K. Du, X. Zhao, W. Chen, Y. Lai, J. Li, Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. Carbon 91, 88–95 (2015). https://doi.org/10.1016/j.carbon.2015.04.049

    Article  CAS  Google Scholar 

  23. D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang, L. Zhang, A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. (2016). https://doi.org/10.1002/aenm.201501929

    Article  Google Scholar 

  24. X. Zhang, G. Zhu, M. Wang, J. Li, T. Lu, L. Pan, Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries. Carbon 116, 686–694 (2017). https://doi.org/10.1016/j.carbon.2017.02.057

    Article  CAS  Google Scholar 

  25. H. Tang, D. Yan, T. Lu, L. Pan, Sulfur-doped carbon spheres with hierarchical micro/mesopores as anode materials for sodium-ion batteries. Electrochim. Acta 241, 63–72 (2017). https://doi.org/10.1016/j.electacta.2017.04.112

    Article  CAS  Google Scholar 

  26. L. Bu, X. Kuai, W. Zhu, X. Huang, K. Tian, H. Lu, J. Zhao, L. Gao, Nitrogen-doped double-shell hollow carbon spheres for fast and stable sodium ion storage. Electrochim. Acta (2020). https://doi.org/10.1016/j.electacta.2020.136804

    Article  Google Scholar 

  27. J. Ye, J. Zang, Z. Tian, M. Zheng, Q. Dong, Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance. J. Mater. Chem. A 4(34), 13223–13227 (2016). https://doi.org/10.1039/c6ta04592h

    Article  CAS  Google Scholar 

  28. X. Fang, S. Liu, J. Zang, C. Xu, M.S. Zheng, Q.F. Dong, D. Sun, N. Zheng, Precisely controlled resorcinol-formaldehyde resin coating for fabricating core-shell, hollow, and yolk-shell carbon nanostructures. Nanoscale 5(15), 6908–6916 (2013). https://doi.org/10.1039/c3nr01723k

    Article  CAS  Google Scholar 

  29. A.F. Werner Stober, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  30. D. Ni, W. Sun, Z. Wang, Y. Bai, H. Lei, X. Lai, K. Sun, Heteroatom-doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201900036

    Article  Google Scholar 

  31. L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou, P. Hu, Y. Huang, Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2(12), 1500195 (2015). https://doi.org/10.1002/advs.201500195

    Article  CAS  Google Scholar 

  32. C. Chen, G. Li, J. Zhu, Y. Lu, M. Jiang, Y. Hu, Z. Shen, X. Zhang, In-situ formation of tin-antimony sulfide in nitrogen-sulfur co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries. Carbon 120, 380–391 (2017). https://doi.org/10.1016/j.carbon.2017.05.072

    Article  CAS  Google Scholar 

  33. A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Electrochemistry of graphene and related materials. Chem. Rev. 114(14), 7150–7188 (2014). https://doi.org/10.1021/cr500023c

    Article  CAS  Google Scholar 

  34. J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. (2017). https://doi.org/10.1002/adma.201604108

    Article  Google Scholar 

  35. M. Liu, Y. Liu, Z. Gao, C. Wang, W. Ye, R. Lu, S. Zhang, Nitrogen and sulfur co-doped carbon nanospheres for highly efficient oxidation of ethylbenzene. New J. Chem 42(19), 15962–15967 (2018). https://doi.org/10.1039/c8nj02948b

    Article  CAS  Google Scholar 

  36. B. Quan, A. Jin, S.H. Yu, S.M. Kang, J. Jeong, H.D. Abruna, L. Jin, Y. Piao, Y.E. Sung, Solvothermal-derived S-doped graphene as an anode material for sodium-ion batteries. Adv. Sci. 5(5), 1700880 (2018). https://doi.org/10.1002/advs.201700880

    Article  CAS  Google Scholar 

  37. J. Xu, J. Zhu, X. Yang, S. Cao, J. Yu, M. Shalom, M. Antonietti, Synthesis of organized layered carbon by self-templating of dithiooxamide. Adv. Mater. 28(31), 6727–6733 (2016). https://doi.org/10.1002/adma201600707

    Article  CAS  Google Scholar 

  38. J. Zhu, C. Chen, Y. Lu, Y. Ge, H. Jiang, K. Fu, X. Zhang, Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94, 189–195 (2015). https://doi.org/10.1016/j.carbon.2015.06.076

    Article  CAS  Google Scholar 

  39. N. Sinan, E. Unur, Hydrothermal conversion of lignocellulosic biomass into high-value energy storage materials. J. Energy Chem. 26(4), 783–789 (2017). https://doi.org/10.1016/j.jechem.2017.04.011

    Article  Google Scholar 

  40. P. Lu, Y. Sun, H. Xiang, X. Liang, Y. Yu, 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201702434

    Article  Google Scholar 

  41. Y. Li, W. Zhong, C. Yang, F. Zheng, Q. Pan, Y. Liu, G. Wang, X. Xiong, M. Liu, N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem. Eng. J. 358, 1147–1154 (2019). https://doi.org/10.1016/j.cej.2018.10.135

    Article  CAS  Google Scholar 

  42. A. Vu, Y. Qian, A. Stein, Porous electrode materials for lithium-ion batteries - how to prepare them and what makes them special. Adv. Energy Mater. 2(9), 1056–1085 (2012). https://doi.org/10.1002/aenm.201200320

    Article  CAS  Google Scholar 

  43. J. Xiang, W. Lv, C. Mu, J. Zhao, B. Wang, Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. J. Alloys Compd. 701, 870–874 (2017). https://doi.org/10.1016/j.jallcom.2017.01.206

    Article  CAS  Google Scholar 

  44. Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z

    Article  CAS  Google Scholar 

  45. R. Hao, Y. Yang, H. Wang, B. Jia, G. Ma, D. Yu, L. Guo, S. Yang, Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy 45, 220–228 (2018). https://doi.org/10.1016/j.nanoen.2017.12.042

    Article  CAS  Google Scholar 

  46. J. Li, Z. Ding, L. Pan, J. Li, C. Wang, G. Wang, Facile self-templating synthesis of layered carbon with N, S dual doping for highly efficient sodium storage. Carbon 173, 31–40 (2021). https://doi.org/10.1016/j.carbon.2020.10.092

    Article  CAS  Google Scholar 

  47. M. Duan, F. Zhu, G. Zhao, J. Hu, H. Zhang, G. Ren, Y. Meng, Z. Fan, Nitrogen and sulfur co-doped mesoporous carbon derived from ionic liquid as high-performance anode material for sodium ion batteries. Microporous Mesoporous Mater. (2020). https://doi.org/10.1016/j.micromeso.2020.110433

    Article  Google Scholar 

  48. L. Wang, L. Hu, W. Yang, D. Liang, L. Liu, S. Liang, C. Yang, Z. Fang, Q. Dong, C. Deng, N/S-Co-doped porous carbon sheets derived from bagasse as high-performance anode materials for sodium-ion batteries. Nanomaterials (Basel) (2019). https://doi.org/10.3390/nano9091203

    Article  Google Scholar 

  49. G. Zhao, Y. Zhang, G. Zou, Y. Zhang, W. Hong, Y. Jiang, W. Xu, H. Shuai, H. Hou, X. Ji, Evaluating the influences of the sulfur content in precursors on the structure and sodium storage performances of carbon materials. J. Mater. Chem. A 6(24), 11488–11495 (2018). https://doi.org/10.1039/c8ta03800g

    Article  CAS  Google Scholar 

  50. W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, K. Jiang, A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 8(10), 2916–2921 (2015). https://doi.org/10.1039/c5ee01985k

    Article  CAS  Google Scholar 

  51. J. Zhang, Z. Yang, J. Qiu, H.-W. Lee, Design and synthesis of nitrogen and sulfur co-doped porous carbon via two-dimensional interlayer confinement for a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 4(16), 5802–5809 (2016). https://doi.org/10.1039/c6ta00025h

    Article  CAS  Google Scholar 

  52. Y. Qiao, M. Ma, Y. Liu, S. Li, Z. Lu, H. Yue, H. Dong, Z. Cao, Y. Yin, S. Yang, First-principles and experimental study of nitrogen/sulfur co-doped carbon nanosheets as anodes for rechargeable sodium ion batteries. J. Mater. Chem. A 4(40), 15565–15574 (2016). https://doi.org/10.1039/c6ta04929j

    Article  CAS  Google Scholar 

  53. W. Shao, F. Hu, C. Song, J. Wang, C. Liu, Z. Weng, X. Jian, Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries. J. Mater. Chem. A 7(11), 6363–6373 (2019). https://doi.org/10.1039/c8ta11921j

    Article  CAS  Google Scholar 

  54. L. Fu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6(3), 1384–1389 (2014). https://doi.org/10.1039/c3nr05374a

    Article  CAS  Google Scholar 

  55. Y. Liu, C. Yang, Q. Pan, Y. Li, G. Wang, X. Ou, F. Zheng, X. Xiong, M. Liu, Q. Zhang, Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries. J. Mater. Chem. A 6(31), 15162–15169 (2018). https://doi.org/10.1039/c8ta04694h

    Article  CAS  Google Scholar 

  56. Y. Liu, L.-Z. Fan, L. Jiao, Graphene highly scattered in porous carbon nanofibers: a binder-free and high-performance anode for sodium-ion batteries. J. Mater. Chem. A 5(4), 1698–1705 (2017). https://doi.org/10.1039/c6ta09961k

    Article  CAS  Google Scholar 

  57. G. Zou, H. Hou, G. Zhao, Z. Huang, P. Ge, X. Ji, Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries. Green. Chem. 19(19), 4622–4632 (2017). https://doi.org/10.1039/c7gc01942d

    Article  CAS  Google Scholar 

  58. D. Saurel, B. Orayech, B. Xiao, D. Carriazo, X. Li, T. Rojo, From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201703268

    Article  Google Scholar 

  59. C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, Y. Huang, Na + intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. (2015). https://doi.org/10.1038/ncomms7929

    Article  Google Scholar 

  60. J. Qian, F. Wu, Y. Ye, M. Zhang, Y. Huang, Y. Xing, W. Qu, L. Li, R. Chen, Boosting fast sodium storage of a large-scalable carbon anode with an ultralong cycle life. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201703159

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52064035), and the Key Research and Development Program of Gansu Province (22YF7GA157) and Natural Science Foundation of Zhejiang Province (Grant No. LGG22E020003).

Author information

Authors and Affiliations

Authors

Contributions

FZ, GR, and YM guided all the experimental design and led the manuscript preparation and revision work. XW did most of the experiments, data analysis, and prepared the draft manuscript. MX, XL and SL conducted some experiments. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Fuliang Zhu or Guofeng Ren.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 593.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Lu, X., Xiao, M. et al. Nitrogen and sulfur co-doped mesoporous hollow carbon spheres for high rate sodium ion storage. J Mater Sci: Mater Electron 34, 908 (2023). https://doi.org/10.1007/s10854-023-10289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10289-x

Navigation