Skip to main content
Log in

Synthesis of a novel nanocomposite of CoTMPyP/Ti3C2 (MXenes) for catechol detection

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel electrochemical sensor based on titanium carbide (Ti3C2) and cobalt porphyrin (CoTMPyP) nanocomposite was developed to detect catechol (CC). X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) methods were used to characterize the CoTMPyP/Ti3C2 nanocomposite and illuminate the electrochemical oxidation process, as well as electrochemical techniques such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) were measured. The results indicate that the introduction of CoTMPyP greatly enhanced the electron transfer capability and maintained high stability, good reproducibility, and interference resistance. Moreover, it has a lower detection limit (2.5 μM) in the range of 5–268 μM and has greater application potential in the detection of CC. Hence, Ti3C2 nanocomposites are considered as a candidate material for combination with carbon materials and have potential applications in environmental analysis and catechol detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    CAS  Google Scholar 

  2. S. Balendhran, S. Walia, H. Nili, J.Z. Ou, S. Zhuiykov, R.B. Kaner, S. Sriram, M. Bhaskaran, K. Kalantar-Zadeh, Two-dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 23(32), 3952–3970 (2013)

    CAS  Google Scholar 

  3. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013)

    Google Scholar 

  4. H.T. Tan, W. Sun, L. Wang, Q. Yan, 2D Transition metal oxides/hydroxides for energy-storage applications. ChemNanoMat 2(7), 562–577 (2016)

    CAS  Google Scholar 

  5. H. Fang, S.L. Bai, C.P. Wong, “White graphene”—hexagonal boron nitride based polymeric composites and their application in thermal management. Compos. Commun. 2, 19–24 (2016)

    Google Scholar 

  6. E.A. Kovaleva, I. Melchakova, N.S. Mikhaleva, F.N. Tomilin, S.G. Ovchinnikov, W. Baek, V.A. Pomogaev, P. Avramov, A.A. Kuzubov, The role of strong electron correlations in determination of band structure and charge distribution of transition metal dihalide monolayers. J. Phys. Chem. Solids 134, 324–332 (2019)

    CAS  Google Scholar 

  7. C.E. Ren, M.Q. Zhao, T. Makaryan, J. Halim, M. Boota, S. Kota, B. Anasori, M.W. Barsoum, Y. Gogotsi, Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem 3(5), 689–693 (2016)

    CAS  Google Scholar 

  8. J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L.Å. Näslund, S.J. May, L. Hultman, Y. Gogotsi, P. Eklund, M.W. Barsoum, Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26(7), 2374–2381 (2014)

    CAS  Google Scholar 

  9. M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013)

    CAS  Google Scholar 

  10. S. Chen, Y. Xiang, M.K. Banks, C. Peng, W. Xu, R. Wu, Polyoxometalate-coupled MXene nanohybrid: via poly(ionic liquid) linkers and its electrode for enhanced supercapacitive performance. Nanoscale 10(42), 20043–20052 (2018)

    CAS  Google Scholar 

  11. Q. Fan, R. Zhao, M. Yi, P. Qi, C. Chai, H. Ying, J. Hao, Ti3C2–MXene composite films functionalized with polypyrrole and ionic liquid-based microemulsion particles for supercapacitor applications. Chem. Eng. J. 428, 131107 (2021)

    Google Scholar 

  12. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011)

    CAS  Google Scholar 

  13. Y. Wang, G. Fan, D. Zhang, Y. Fan, B. Liu, Striking enhanced effect of PrF3 particles on Ti3C2 MXene for hydrogen storage properties of MgH2. J. Alloys Compd. 914, 165291 (2022)

    CAS  Google Scholar 

  14. X. Lv, Z. Deng, M. Wang, J. Deng, Ti3C2 MXene derived carbon-doped TiO2 multilayers anchored with Fe2O3 nanoparticles as anode for enhanced lithium-ion storage. J. Alloys Compd. 918, 165697 (2022)

    CAS  Google Scholar 

  15. J. Xu, X. Yang, Y. Zou, L. Zhu, F. Xu, L. Sun, C. Xiang, J. Zhang, High density anchoring of NiMoS4 on ultrathin Ti3C2 MXene assisted by dopamine for supercapacitor electrode materials. J. Alloys Compd. 891, 161945 (2022)

    CAS  Google Scholar 

  16. H. Zhu, Z. Liang, S. Xue, X. Ren, X. Liang, W. Xiong, L. Gao, A. Liu, DFT practice in MXene-based materials for electrocatalysis and energy storage: from basics to applications. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.06.070

    Article  Google Scholar 

  17. A.C.Y. Yuen, T.B.Y. Chen, B. Lin, W. Yang, I.I. Kabir, I.M. De Cachinho Cordeiro, A.E. Whitten, J. Mata, B. Yu, H.D. Lu, G.H. Yeoh, Study of structure morphology and layer thickness of Ti3C2 MXene with Small-Angle Neutron Scattering (SANS). Composites C 5(December 2020), 100155 (2021)

    CAS  Google Scholar 

  18. M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516(7529), 78–81 (2015)

    Google Scholar 

  19. R. Huang, S. Chen, J. Yu, X. Jiang, Self-assembled Ti3C2/MWCNTs nanocomposites modified glassy carbon electrode for electrochemical simultaneous detection of hydroquinone and catechol. Ecotoxicol. Environ. Saf. 184, 109619 (2019)

    CAS  Google Scholar 

  20. Z. Xiao, Z. Li, P. Li, X. Meng, R. Wang, Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium–sulfur batteries. ACS Nano 13(3), 3608–3617 (2019)

    CAS  Google Scholar 

  21. M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27(2), 339–345 (2015)

    CAS  Google Scholar 

  22. B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017)

    CAS  Google Scholar 

  23. H. Wang, T. Cao, Y. Zhou, L. Liu, X. Zhang, Z. Tong, A facile approach to synthesis methylene blue/reduced graphene oxide nanocomposite and simultaneous determination of dopamine and uric acid. J. Appl. Electrochem. 52(7), 1067–1080 (2022)

    CAS  Google Scholar 

  24. S. Wu, H. Wang, B. Zhao, T. Cao, J. Ma, L. Liu, Z. Tong, Construction of cationic polyfluorinated azobenzene/reduced graphene oxide for simultaneous determination of dopamine, uric acid and ascorbic acid. Talanta 237, 122986 (2022)

    CAS  Google Scholar 

  25. Z. Chen, Y. Wang, J. Han, T. Wang, Y. Leng, Y. Wang, T. Li, Y. Han, Preparation of polyaniline onto dl-tartaric acid assembled MXene surface as an electrode material for supercapacitors. ACS Appl. Energy Mater. 3(9), 9326–9336 (2020)

    CAS  Google Scholar 

  26. K. Wang, Y. Zhou, W. Xu, D. Huang, Z. Wang, M. Hong, Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram. Int. 42(7), 8419–8424 (2016)

    CAS  Google Scholar 

  27. J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1–10 (2017)

    Google Scholar 

  28. T. Zhang, L. Pan, H. Tang, F. Du, Y. Guo, T. Qiu, J. Yang, Synthesis of two-dimensional Ti3C2TxMXene using HCl + LiF etchant: enhanced exfoliation and delamination. J. Alloys Compd. 695, 818–826 (2017)

    CAS  Google Scholar 

  29. J. Ma, J. Wu, J. Zheng, L. Liu, D. Zhang, X. Xu, X. Yang, Z. Tong, Functional layered niobate nanocomposite with cationic manganese porphyrin and its electrocatalytic behavior. Mater. Lett. 71, 4–6 (2012)

    CAS  Google Scholar 

  30. U. Mazur, K.W. Hipps, A systematic approach toward designing functional ionic porphyrin crystalline materials. J. Phys. Chem. C 122(40), 22803–22820 (2018)

    CAS  Google Scholar 

  31. Q. Lian, Z. He, Q. He, A. Luo, K. Yan, D. Zhang, X. Lu, X. Zhou, Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene. Anal. Chim. Acta 823, 32–39 (2014)

    CAS  Google Scholar 

  32. Y. Zhu, L. Peng, D. Chen, G. Yu, Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett. 16(1), 742–747 (2016)

    CAS  Google Scholar 

  33. C. Shen, T. Cheng, C. Liu, L. Huang, M. Cao, G. Song, D. Wang, B. Lu, J. Wang, C. Qin, X. Huang, P. Peng, X. Li, Y. Wu, Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries. J. Mater. Chem. A 8(1), 453–460 (2020)

    CAS  Google Scholar 

  34. L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A Nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30(20), 1–7 (2018)

    Google Scholar 

  35. S. Chandra, K. Arora, D. Bahadur, Impedimetric biosensor based on magnetic nanoparticles for electrochemical detection of dopamine. Mater. Sci. Eng. B 177(17), 1531–1537 (2012)

    CAS  Google Scholar 

  36. H. Wang, Z. Fan, T. Cao, S. Wu, S. Chen, D. Tan, X. Zhang, Z. Tong, Fabrication of a new self-assembly compound of LiTaMoO6 with cationic manganese porphyrin utilized as an ascorbic acid and dopamine sensor. J. Alloys Compd. 887, 161462 (2021)

    CAS  Google Scholar 

  37. N. Ndebele, P. Sen, T. Nyokong, Electrocatalytic activity of Schiff base containing copper phthalocyanines towards the detection of catechol: effect of heteroatoms and asymmetry. Polyhedron 210, 115518 (2021)

    CAS  Google Scholar 

  38. N.S. Nguyen, G. Das, H.H. Yoon, Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea. Biosens. Bioelectron. 77, 372–377 (2016)

    CAS  Google Scholar 

  39. X. Xu, P. Lu, Y. Zhou, Z. Zhao, M. Guo, Laccase immobilized on methylene blue modified mesoporous silica MCM-41/PVA. Mater. Sci. Eng. C 29(7), 2160–2164 (2009)

    CAS  Google Scholar 

  40. J. Chen, Q. Yu, X. Cui, M. Dong, J. Zhang, C. Wang, J. Fan, Y. Zhu, Z. Guo, An overview of stretchable strain sensors from conductive polymer nanocomposites. J. Mater. Chem. C 7(38), 11710–11730 (2019)

    CAS  Google Scholar 

  41. Y. Song, M. Zhao, X. Wang, H. Qu, Y. Liu, S. Chen, Simultaneous electrochemical determination of catechol and hydroquinone in seawater using Co3O4/MWCNTs/GCE. Mater. Chem. Phys. 234, 217–223 (2019)

    CAS  Google Scholar 

  42. L. Zhao, J. Yu, S. Yue, L. Zhang, Z. Wang, P. Guo, Q. Liu, Nickel oxide/carbon nanotube nanocomposites prepared by atomic layer deposition for electrochemical sensing of hydroquinone and catechol. J. Electroanal. Chem. 808, 245–251 (2018)

    CAS  Google Scholar 

  43. C. Sarika, M.S. Shivakumar, C. Shivakumara, G. Krishnamurthy, B. Narasimha Murthy, I.C. Lekshmi, A novel amperometric catechol biosensor based on α-Fe2O3 nanocrystals-modified carbon paste electrode. Artif. Cells Nanomed. Biotechnol. 45(3), 625–634 (2017)

    CAS  Google Scholar 

  44. Y. Zheng, D. Wang, Z. Li, X. Sun, T. Gao, G. Zhou, Laccase biosensor fabricated on flower-shaped yolk-shell SiO2 nanospheres for catechol detection. Colloids Surf. A 538, 202–209 (2018)

    CAS  Google Scholar 

  45. P. Hambright, E.B. Fleisher, Acid–base equilibriums, kinetics of copper ion incorporation, and acid-catalyzed zinc ion displacement from the water-soluble porphyrin alpha, beta, gamma, delta-tetrakis(1-methyl-4-pyridinio)porphine tetraiodide. Inorg. Chem. 9(7), 1757–1761 (1970)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the First-Class Undergraduate Majors Construction Program of Jiangsu Province, the National Natural Science Foundation of China (22208132), the 2019 Petrel Project of Lianyungang (2019-QD-014), the Jiangsu Provincial Key Laboratory of Advanced Material Functions Control Technology Research Fund (jsklfctam201805), and Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX21_3137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1892 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cao, T., Zhou, Y. et al. Synthesis of a novel nanocomposite of CoTMPyP/Ti3C2 (MXenes) for catechol detection. Journal of Materials Research 38, 4784–4794 (2023). https://doi.org/10.1557/s43578-023-01196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01196-2

Keywords

Navigation