Skip to main content
Log in

Tri-metallic AM-Ag/CuO/ZnO NC synthesized via green chemistry principle and its biomedical applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Complex tri-metallic AM-Ag/CuO/ZnO NC (NC = Nano-composite) was derived by applying green chemistry principles and optimized via different parameters using simple optical properties of the constituent metals. Primary optimization of AM-Ag/CuO/ZnO NC was done by UV–VIS-NIR spectrophotometer, FTIR spectral report with respect to A. monophylla leaf extract, demonstrated specific peaks in the range 802 to 466 cm−1 which validated the collective synthesis of nano-composite. XRD analysis evaluated the dominant face-centred cubic (FCC) crystal phase over monoclinic and hexagonal phases with an average diameter of 10.20 nm. The morphology, shape, crystalline nature and average diameter were characterized by HR-SEM, HR-TEM images, SAED pattern and micrograph images respectively. Tri-metallic AM-Ag/CuO/ZnO NC has shown an admirable zone of inhibition against eight pathogenic bacteria and potential in-vitro antioxidant activity against DPPH and ABTS free radicals. Nano-composite also well-established the selective inhibition of cervical cancer cell lines compared to (immortal) human embryonic kidney cell lines.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 1

Similar content being viewed by others

Data availability

Data is included in the manuscript.

References

  1. A. Verma, S.P. Gautam, K.K. Bansal, N. Prabhakar, J.M. Rosenholm, Medicines (2019). https://doi.org/10.3390/medicines6010039

    Article  Google Scholar 

  2. D. Nath, P. Banerjee, Environ. Toxicol. Pharmacol. (2013). https://doi.org/10.1016/j.etap.2013.09.002

    Article  Google Scholar 

  3. R. Verma, A.B. Khan, A. Kumar, A.K. Amar, N. Kumar, T.S. Dabodiya, B. Barman, Inorg. Chem. Commun. (2023). https://doi.org/10.1016/j.inoche.2023.111385

    Article  Google Scholar 

  4. M. Zare, K. Namratha, M.S. Takur, K. Byrappa, Mater. Res. Bull. (2019). https://doi.org/10.1016/j.materresbull.2018.09.025

    Article  Google Scholar 

  5. M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Verma, Chem. Rev. (2016). https://doi.org/10.1021/acs.chemrev.5b00482

    Article  Google Scholar 

  6. Z. Fan, J.G. Lu, J. Nanosci. Nanotechnol. (2005). https://doi.org/10.1166/jnn.2005.182

    Article  Google Scholar 

  7. S. Dutta, K.K. Jaiswal, R. Verma, D.M. Basavaraju, A.P. Ramaswamy, Biocatal. Agric. Biotechnol. (2019). https://doi.org/10.1016/j.bcab.2019.101390

    Article  Google Scholar 

  8. R. Verma, A.B. Khan, Chem. Eng. Technol. (2021). https://doi.org/10.1002/ceat.202000456

    Article  Google Scholar 

  9. K.K. Jaiswal, D. Manikandan, R. Murugan, A.P. Ramaswamy, Eur. Polym. J. (2018). https://doi.org/10.1016/j.eurpolymj.2017.11.005

    Article  Google Scholar 

  10. M. Baghbanzadeh, L. Carbone, P.D. Cozzoli, C.O. Kappe, Angew. Chem. Int. Ed. (2011). https://doi.org/10.1002/anie.201101274

    Article  Google Scholar 

  11. A.G. Atanasov, S.B. Zotchev, V.M. Dirsch, C.T. Supuran, Nat. Rev. Drug. Discov. (2021). https://doi.org/10.1038/s41573-020-00114-z

    Article  Google Scholar 

  12. K.K. Jaiswal, I. Banerjee, S. Dutta, R. Verma, L. Gunti, S. Awasthi, M. Bhusan, V. Kumar, F.M. Alajmi, A. Hussain, J. Ind. Eng. Chem. (2022). https://doi.org/10.1016/j.jiec.2021.11.041

    Article  Google Scholar 

  13. M.Y. Vaidya, A.J. McBain, J.A. Butler, C.E. Banks, K.A. Whitehead, Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-05976-9

    Article  Google Scholar 

  14. P. Mecocci, E. Mariani, M.C. Polidori, K. Hensley, D.A. Butterfield, Cent. Ner. Syst. Agents Med. Chem (2008). https://doi.org/10.2174/187152408783790613

    Article  Google Scholar 

  15. H. Muthukumar, M. Matheswaran, A.C.S. Sust, Chem. Eng. (2015). https://doi.org/10.1021/acssuschemeng.5b00722

    Article  Google Scholar 

  16. R.S. Priya, D. Geetha, P.S. Ramesh, Ecotoxicol. Environ. Saf. (2016). https://doi.org/10.1016/j.ecoenv.2015.07.037

    Article  Google Scholar 

  17. T. Naseem, M.A. Farrukh, J. Chem. (2015). https://doi.org/10.1155/2015/912342

    Article  Google Scholar 

  18. Z. Wang, ACS Sustain. Chem. Eng. (2013). https://doi.org/10.1021/sc400174a

    Article  Google Scholar 

  19. L. Huang, X. Weng, Z. Chen, M. Megharaj, R. Naidu, Acta A Mol. Biomol. Spectrosc. (2014). https://doi.org/10.1016/j.saa.2013.09.054

    Article  Google Scholar 

  20. M. Gnoli, F. Ponti, L. Sangiorgi, Tumor syndromes that include bone tumors: an update. Surg. Patho. Clin. (2017). https://doi.org/10.1016/j.path.2017.04.009

    Article  Google Scholar 

  21. N. Akkurt, M.H.A. Al-Jumaili, B.B. Eran, H. Ocak, L. Torun, Turk. J. Chem. (2019). https://doi.org/10.3906/kim-1907-26

    Article  Google Scholar 

  22. M.H.A. Al-Jumaili, A.S. Hamed, N. Akkurt, L. Torun, Indones. J. Chem. (2020). https://doi.org/10.22146/ijc.49419

    Article  Google Scholar 

  23. M.H.A. Al-Jumaili, N. Akkurt, L. Torun, Monatsh. Chem. Chem. Mon. (2021). https://doi.org/10.1007/s00706-021-02768-w

    Article  Google Scholar 

  24. A. Sagaama, N. Issaoui, O. Al-Dossary, A.S. Kazachenko, M.J. Wojcik, J. King Saud. Univ. Sci. (2021). https://doi.org/10.1016/j.jksus.2021.101606

    Article  Google Scholar 

  25. V.K. Chaturvedi, S.N. Rai, N. Tabassum, N. Yadav, V. Singh, R.A. Bohara, M.P. Singh, Biochem. Biophys. Rep. (2020). https://doi.org/10.1016/j.bbrep.2020.100812

    Article  Google Scholar 

  26. R. Dobrucka, A. Romaniuk-Drapała, M. Kaczmarek, Biomed. Microdevices (2020). https://doi.org/10.1007/s10544-020-00526-z

    Article  Google Scholar 

  27. R. Thirugnanasampandan, G. Ramya, M. Gogulramnath, Indian J. Pharmacol. (2016). https://doi.org/10.4103/0253-7613.194866

    Article  Google Scholar 

  28. K. Baskar, C. Muthu, G.A. Raj, S. Kingsley, S. Ignacimuthu, Trop. Biomed. (2012). https://doi.org/10.1016/S2221-1691(13)60011-8

    Article  Google Scholar 

  29. K. Xu, J. Wu, C.F. Tan, G.W. Ho, A. Wei, M. Hong, Nanoscale (2017). https://doi.org/10.1039/C7NR03279J

    Article  Google Scholar 

  30. A. Bayrami, S. Parvinroo, A. Habibi-Yangjeh, S.R. Pouran, Artif. Cells Nanomed. Biotechnol. (2018). https://doi.org/10.1080/21691401.2017.1337025

    Article  Google Scholar 

  31. S. Mahadevan, S. Vijayakumar, S. Arulmozhi, Microb. Pathog. (2017). https://doi.org/10.1016/j.micpath.2017.11.029

    Article  Google Scholar 

  32. V. Prakash, R.K. Diwan, U.K. Niyogi, Indian J. Pure Appl. Phys. (2015) http://op.niscair.res.in/index.php/IJPAP/ article/view/4916

  33. S. Aiswarya Devi, M. Harshiny, S. Udaykumar, P. Gopinath, M. Matheswaran, Toxicol. Res. (Camb) 6, 854–865 (2017). https://doi.org/10.1039/c7tx00093f

    Article  CAS  Google Scholar 

  34. A.L. Subramaniyan, S. Thiruppathi, M.M. Sathath, M. Kannan, Natl. Acad. Sci. Lett. (2019). https://doi.org/10.1007/s40009-018-0723-1

    Article  Google Scholar 

  35. M.J. Alvarez-Figueroa, D.A. Alarcón, J.V. González-Aramúndiz, Drug Deliv. Transl. Res. (2022). https://doi.org/10.1007/s13346-022-01134-5nas

    Article  Google Scholar 

  36. N. Basavegowda, K. Mishra, Y.R.J. Lee, Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.01.122

    Article  Google Scholar 

  37. P. Khandel, R.K. Yadaw, D.K. Soni, L. Kanwar, S.K. Shahi, J. Nanostruct. Chem. (2018). https://doi.org/10.1007/s40097-018-0267-4

    Article  Google Scholar 

  38. M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R.S. Varma, Nanomaterials (2020). https://doi.org/10.3390/nano10091784

    Article  Google Scholar 

  39. X.L. Cai, C.H. Liu, J. Liu, Y. Lu, Y.N. Zhong, K.Q. Nie, S.D. Wang, Nano-micro Let. (2017). https://doi.org/10.1007/s11814-018-0216-4

    Article  Google Scholar 

  40. Z. Vaseghi, O. Tavakoli, A. Nematollahzadeh, Korean J. Chem. Eng. (2019). https://doi.org/10.1007/s11814-018-0216-4

    Article  Google Scholar 

  41. L. Praburaman, J.S. Jang, G. Muthusamy, S. Arumugam, K. Manoharan, K.M. Cho, C. Min, S.K. Kannan, O. Byung Teak, Artif. Cells Nanomed. Biotechnol (2016). https://doi.org/10.3109/21691401.2015.1029630

    Article  Google Scholar 

  42. J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Acta Biomater. (2008). https://doi.org/10.1016/j.actbio.2007.11.006

    Article  Google Scholar 

  43. A. Simon-Deckers, S. Loo, M. Mayne-L’hermite, N. Herlin-Boime, N. Menguy, Environ. Sci. Technol (2009). https://doi.org/10.1021/es9016975

    Article  Google Scholar 

  44. N. Padmavathy, R. Vijayaraghavan, Sci. Technol. Adv. Mater. (2008). https://doi.org/10.1088/1468-6996/9/3/035004

    Article  Google Scholar 

  45. J.S. McQuillan, H. Groenaga Infante, E. Stokes, A.M. Shaw, Nanotoxicology (2012). https://doi.org/10.3109/17435390.2011.626532

    Article  Google Scholar 

  46. S. Soltani Nezhad, M. Rabbani Khorasgani, G. Emtiazi, M.M. Yaghoobi, S. Shakeri, World J. Microbiol. Biotechnol. (2014). https://doi.org/10.1007/s11274-013-1481-3

    Article  Google Scholar 

  47. S. Meghana, P. Kabra, S. Chakraborty, N. Padmavathy, RSC Adv. (2015). https://doi.org/10.1039/C4RA12163E

    Article  Google Scholar 

  48. A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, H. Sharghi, J. Nanomater. (2015). https://doi.org/10.1155/2015/720654

    Article  Google Scholar 

  49. P.J. Espitia, N.D. Soares, J.S. Coimbra, N.J. de Andrade, R.S. Cruz, E.A. Medeiros, Medeiros Food Bioproc. Tech. (2012). https://doi.org/10.1007/s11947-012-0797-6

    Article  Google Scholar 

  50. D. Guo, H. Bi, B. Liu, Q. Wu, D. Wang, Y. Cui, Toxicol. In Vitro (2013). https://doi.org/10.1016/j.tiv.2012.12.001

    Article  Google Scholar 

  51. A. Kessler, J. Hedberg, E. Blomberg, I. Odnevall, Nanomater. (2022). https://doi.org/10.3390/nano12111922

    Article  Google Scholar 

  52. C. Rensing, G. Grass, F.E.M.S. Microbiol. Rev. 5, 35 (2003). https://doi.org/10.1016/S0168-6445(03)00049-4

    Article  CAS  Google Scholar 

  53. K.R. Raghupathi, R.T. Koodali, Langmuir (2011). https://doi.org/10.1021/la104825u

    Article  Google Scholar 

  54. M. Ijaz, M. Zafar, A. Islam, S. Afsheen, T. Iqbal, J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.10077/s10904-020-01603-9

    Article  Google Scholar 

  55. Z. Bedlovičová, I. Strapáč, M. Baláž, A. Salayová, Molecules (2020). https://doi.org/10.3390/molecules25143191

    Article  Google Scholar 

  56. L. Sun, J. Zhang, X. Lu, L. Zhang, Y. Zhang, Food Chem. Toxicol. (2011). https://doi.org/10.1016/j.fct.2011.07.042

    Article  Google Scholar 

  57. H. Umar, D. Kavaz, N. Rizaner, Int. J. Nanomed. (2019). https://doi.org/10.2147/IJN.S186888

    Article  Google Scholar 

  58. B. Siripireddy, B.K. Mandal, Adv. Powder Technol. (2017). https://doi.org/10.1016/j.apt.2016.11.026

    Article  Google Scholar 

  59. L. Valgimigli, A. Baschieri, R. Amorati, J. Mat. Chem. B. (2018). https://doi.org/10.1039/C8TB00107C

    Article  Google Scholar 

  60. Z.E. Nazari, M. Banoee, A.A. Sepahi, F. Rafii, A.R. Shahverdi, Gold Bull. (2012). https://doi.org/10.1007/s13404-012-0048-7

    Article  Google Scholar 

  61. C. Hanley, J. Layne, A. Punnoose, K. Reddy, I. Coombs, A. Coombs, K. Feris, D. Wingett, Nanotechnology (2008). https://doi.org/10.1088/0957-4484/19/29/29510

    Article  Google Scholar 

  62. D. Wingett, P. Louka, C.B. Anders, J. Zhang, A. PunnooseNanotechnol, Sci. Appl. (2016). https://doi.org/10.2147/NSA.S99747

    Article  Google Scholar 

  63. D. Guo, D. Dou, L. Ge, Z. Huang, L. Wang, N. Gu, Colloids Surf. B (2015). https://doi.org/10.1016/j.colsurfb.2015.06.070

    Article  Google Scholar 

  64. B.C. Figueiredo, J.H. Kim, V. Zucolotto, H. Fuchs, K. Riehemann, Artif. Cells Nanomed. Biotechnol. (2018). https://doi.org/10.1080/21691401.2018.1468767

    Article  Google Scholar 

  65. A. Sasidharan, P. Chandran, D. Menon, S. Raman, S. Nair, M. Koyakutty, Nanoscale (2011). https://doi.org/10.1039/C1NR10272A

    Article  Google Scholar 

  66. M.F. Rahman, J. Wang, T.A. Patterson, U.T. Saini, B.L. Robinson, G.D. Newport, R.C. Murdock, J.J. Schlager, S.M. Hussain, S.F. Ali, Toxicol. Lett. (2009). https://doi.org/10.1016/j.toxlet.2009.01.020

    Article  Google Scholar 

  67. M.M.R. Mollick, D. Rana, S.K. Dash, S. Chattopadhyay, B. Bhowmick, D. Maity, D. Mondal, S. Pattanayak, S. Roy, M. Chakraborty, D. Chattopadhyay, Arab. J. Chem. (2019). https://doi.org/10.1016/j.arabjc.2015.04.033

    Article  Google Scholar 

  68. C. García-Ruiz, A. Colell, M. Marí, A. Morales, J.C. Fernández-ChecaJ, Biol. l Chem. (1997). https://doi.org/10.1074/jbc.272.17.11369

    Article  Google Scholar 

  69. I. Kruman, A.J. Bruce-Keller, D. Bredesen, G. Waeg, M.P. Mattson, J. Neurosci. (1997). https://doi.org/10.1523/JNEUROSCI

    Article  Google Scholar 

  70. P.V. Asharani, M.P. Hande, S. Valiyaveettil, BMCcell Biol. (2009). https://doi.org/10.1186/1471-2121-10-65

    Article  Google Scholar 

  71. S. Ostrovsky, G. Kazimirsky, A. Gedanken, C. Brodie, Nano Res. (2009). https://doi.org/10.1007/s12274-009-9089-5

    Article  Google Scholar 

  72. S. Chakraborti, S. Chakraborty, S. Saha, A. Manna, S. Banerjee, A. Adhikary, P. Chakrabarti, Free Radic. Biol. Med. (2017). https://doi.org/10.1016/j.freeradbiomed.2016.11.048

    Article  Google Scholar 

  73. M.J. Akhtar, M. Ahamed, S. Kumar, M.M. Khan, J. Ahmad, S.A. Alrokayan, Int. J. Nanomed. (2012). https://doi.org/10.2147/IJN.S29129

    Article  Google Scholar 

  74. F. Baghbani-Arani, R. Movagharnia, A. Sharifian, S. Salehi, S.A.S. Shandiz, J. Photochem. Photobiol. B Biol. (2017). https://doi.org/10.1016/j.jphotobiol.2017.07.003

    Article  Google Scholar 

  75. M. Buttacavoli, N.N. Albanese, G. Di Cara, R. Alduina, C. Faleri, M. Gallo, P. Cancemi, Oncotarget 5, 25 (2018)

    Google Scholar 

  76. R. Verma, A.B. Khan, A.K. Amar, M.I.K. Khan, S. Sah, Appl. Nanosci. (2022). https://doi.org/10.1007/s13204-022-025499-9

    Article  Google Scholar 

  77. R. Verma, A.B. Khan, A.K. Amar, M.I.K. Khan, S. Sah, ESEE (2022). https://doi.org/10.30919/esee8c745

    Article  Google Scholar 

  78. R. Verma, A.N. Khan, M.I.K. Khan, A.K. Amar, S. Sah, K.K. Jaiswal, R.K. Singh, Chem. Eng. Technol. (2021). https://doi.org/10.1002/ceat.20200052

    Article  Google Scholar 

  79. S.W. Kang, Y.W. Lee, Y. Park, B.S. Choi, J.W. Hong, K.H. Park, S.W. Han, ACS Nano (2013). https://doi.org/10.1021/nn403027j

    Article  Google Scholar 

  80. C. Valgas, S.M.D. Souza, E.F. Smânia, A. Smânia Jr. Braz. J. Microbiol. (2007). https://doi.org/10.1590/S1517-83822007000200034

    Article  Google Scholar 

  81. C.Y. Gan, A.A. Latiff, Food Chem. (2011). https://doi.org/10.1016/j.foodchem.2010.07.074

    Article  Google Scholar 

  82. X. Wang, Q. Wu, Y. Wu, G. Chen, W. Yue, Q. Liang, Molecules (2012). https://doi.org/10.3390/molecules17066769

    Article  Google Scholar 

  83. A. Dey, S. Manna, S. Chattopadhyay, D. Mondal, D. Chattopadhyay, A. Raj, S. Das, B.G. Bag, S.J. Roy, Saudi Chem. Soc. (2019). https://doi.org/10.1016/j.jtemb.2019.06.012

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express gratitude to Pondicherry University to the Department of Ecology & Environmental Sciences for the lab facility, to the Department of Biotechnology for providing the lab facility for carrying out antibacterial and anticancer activity tests and to Central Instrumentation Facility (CIF) for the characterization of the synthesized material. The authors would also like to express thanks to SAIF IIT Madras for the HR-SEM characterization and Thermal analysis of the material.

Funding

There is no funding provided for this project.

Author information

Authors and Affiliations

Authors

Contributions

Project concept design and laboratory work especially related to material synthesis, characterization and applications was performed by RV. In addition to project concept, critical assessment and editing, manuscript uploading was done by ABK. An antibacterial test and data analysis were performed under the continuous observation of AKA. MIKK’s contribution was in his keen observation throughout the in-vitro experiment for anticancer activity and further helped in anticancer data analysis. AK helped in collection of plant materials, sample processing and material characterization. AK sketched the antibacterial activity graph and done the synergistic and antagonistic study via GraphPad prism software. SS provided critical assessment during MIC and MBC study. RS contributed in characterizing Trimetallic AM-Ag/CuO/ZnO NC, especially for XRD pattern and thermal analysis. His contribution during second revision was partly also in designing Scheme 1.

Corresponding author

Correspondence to Anisa Basheer Khan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2115 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R., Khan, A.B., Amar, A.K. et al. Tri-metallic AM-Ag/CuO/ZnO NC synthesized via green chemistry principle and its biomedical applications. Journal of Materials Research 38, 4641–4654 (2023). https://doi.org/10.1557/s43578-023-01184-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01184-6

Navigation