Skip to main content
Log in

Impact of shock waves on morphological, structural, optical and dielectric properties of l-alaninium maleate crystals

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Single crystals of l-alaninium maleate (LAM) were successfully grown by utilizing the Sankaranarayanan–Ramasamy (SR) method. The cut and polished crystal of LAM was subjected to shock waves of 1.7 Mach number. The dynamic shock wave impact on the test crystal in terms of morphological, structural, optical, and dielectric properties was analyzed using optical microscope, powder X-ray diffractometer, UV–Visible spectrometer, and impedance analyzer, respectively. From the observed data under shock-loaded conditions, LAM crystal exhibits a good structural stability against shock waves. The obtained values of optical transmittance of the test crystal for different number of shock pulses show that there is a slight reduction of transmission because of the induced defects and deformations formed under shocked conditions. From the dielectric study, it is observed that the values of dielectric constant and dielectric loss are reduced substantially under shock-loaded conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on request.

Code availability

Not applicable.

References

  1. B.A. Zakharov, E.V. Boldyreva, Acta Crystallogr. B 69, 271–280 (2013). https://doi.org/10.1107/S2052519213011676

    Article  CAS  Google Scholar 

  2. A. Dawson, D.R. Allan, S.A. Belmonte, S.J. Clark, W.I.F. David, P.A. McGregor, S. Parsons, C.R. Pulham, L. Sawyer, Cryst. Growth Des. 5, 1415–1427 (2005). https://doi.org/10.1021/cg049716m

    Article  CAS  Google Scholar 

  3. V.S. Minkov, E.V. Boldyreva, T.N. Drebushchak, C.H. Görbitz, CrystEngComm 14, 5943–5954 (2012). https://doi.org/10.1039/C2CE25241D

    Article  CAS  Google Scholar 

  4. N.A. Tumanov, E.V. Boldyreva, Acta Crystallogr. B 68, 412–423 (2012). https://doi.org/10.1107/S0108768112028972

    Article  CAS  Google Scholar 

  5. N.P. Funnell, W.G. Marshall, S. Parsons, CrystEngComm 13, 5841–5848 (2011). https://doi.org/10.1039/C1CE05487B

    Article  CAS  Google Scholar 

  6. D. Shanthi, P. Selvarajan, S. Perumal, Mater. Today Proc. 2, 943–948 (2015). https://doi.org/10.1016/j.matpr.2015.06.013

    Article  Google Scholar 

  7. D.A. Fentaw, M.E. Peter, T. Abza, J. Cryst. Growth 522, 1–4 (2019). https://doi.org/10.1016/j.jcrysgro.2019.06.002

    Article  CAS  Google Scholar 

  8. L.R. Nirmala, J.T.J. Prakash, Acta A Mol. Biomol.Spectrosc. 115, 778–782 (2013). https://doi.org/10.1016/j.saa.2013.06.100

    Article  CAS  Google Scholar 

  9. N. Vijayan, G. Bhagavannarayana, K.K. Maurya, S.N. Sharma, R. Gopalakrishnan, Jayabharathi, P. Ramasamy, Optik 123, 604–608 (2012). https://doi.org/10.1016/j.ijleo.2011.06.002

    Article  CAS  Google Scholar 

  10. D. Balasubramanian, R. Jayavel, P. Murugakoothan, Nat. Sci. 1, 216–221 (2009). https://doi.org/10.4236/ns.2009.13029

    Article  CAS  Google Scholar 

  11. K. Seethalakshmi, S.K. Mohan, Asian J. Appl. Sci. 9, 23–29 (2016). https://doi.org/10.3923/ajaps.2016.23.29

    Article  CAS  Google Scholar 

  12. S.A. Martin Britto Dhas, E. Ramachandran, P. Raji, K. Ramachandran, S. Natarajan, Cryst. Res. Technol. 42, 601–606 (2007). https://doi.org/10.1002/crat.200610870

    Article  CAS  Google Scholar 

  13. K. Vasantha, S. Dhanuskodi, J. Cryst. Growth 263, 466–472 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.096

    Article  CAS  Google Scholar 

  14. U. Charoen-In, P. Ramasamy, P. Manyum, J. Cryst. Growth 312, 2369–2375 (2010). https://doi.org/10.1016/j.jcrysgro.2010.05.027

    Article  CAS  Google Scholar 

  15. K. Senthil Kannan, B. Kaleemullah Khan, H.A. Jaffar Ali, V.K. Ponnusamy, N.M. Govindan, Mater. Today Proc. 33, 2779–2781 (2020). https://doi.org/10.1016/j.matpr.2020.02.133

    Article  CAS  Google Scholar 

  16. G.T. Gray III, Influence of shock-wave deformation on the structure/property behavior of materials, in High-Pressure Shock Compression of Solids, ed. by J.R. Asay et al. (Springer, New York, 1993). https://doi.org/10.1007/978-1-4612-0911-9_6

  17. S.C. Gupta, K.D. Joshi, S. Banerjee, Materials under shock waves, in Materials Under Extreme Conditions, ed. by A.K. Tyagi, S. Banerjee (Elsevier, Amsterdam, 2017), pp. 49–89. https://doi.org/10.1016/B978-0-12-801300-7.00002-4

  18. A. Sivakumar, A. Saranraj, S. Sahaya Jude Dhas, S.A. Martin Britto Dhas, Cryst. Mater. Res. Express 6, 046205 (2019). https://doi.org/10.1088/2053-1591/aafb47

    Article  CAS  Google Scholar 

  19. A. Sivakumar, M. Sarumathi, S. Sahaya Jude Dhas, S.A. Martin Britto Dhas, J. Mater. Res. 35, 391–400 (2020). https://doi.org/10.1557/jmr.2019.383

    Article  CAS  Google Scholar 

  20. A. Sivakumar, A. Saranraj, S. Sahaya Jude Dhas, M. Jose, S.A. Martin Britto Dhas, Opt. Eng. 58, 077104 (2019). https://doi.org/10.1117/1.OE.58.7.077104

    Article  Google Scholar 

  21. A. Sivakumar, S. Sahaya Jude Dhas, S. Balachandar, S.A. Martin Britto Dhas, J. Electron. Mater. 48, 7868–7873 (2019). https://doi.org/10.1007/s11664-019-07605-9

    Article  CAS  Google Scholar 

  22. P.A. Urtiew, J. Appl. Phys. 45, 3490 (1974). https://doi.org/10.1063/1.1663807

    Article  CAS  Google Scholar 

  23. T. Mashimo, K. Nakamura, K. Tsumoto, Y. Zhang, S. Ando, H. Tonda, J. Phys. Condens. Matter 14, 10783 (2002). https://doi.org/10.1088/0953-8984/14/44/377

    Article  CAS  Google Scholar 

  24. K.N. Hemmi, Z.A. Dreger, Y.M. Gupta, J. Phys. Chem. C 112, 7761–7766 (2008). https://doi.org/10.1021/jp801695x

    Article  CAS  Google Scholar 

  25. S.V. Singh, J. Vishakantaiah, J.K. Meka, V. Sivaprahasam, V. Chandrasekaran, R. Thombre, V. Thiruvenkatam, A. Mallya, B.N. Rajasekhar, M. Muruganantham, A. Datey, H. Hill, A. Bhardwaj, G. Jagadeesh, K.P.J. Reddy, N.J. Mason, B. Sivaraman, Molecules 25, 5634 (2020). https://doi.org/10.3390/molecules25235634

    Article  CAS  Google Scholar 

  26. A. Sivakumar, A. Saranraj, S. Sahaya Jude Dhas, A.I. Almansour, R. Suresh Kumar, N. Arumugam, K. Perumal, S.A. Martin Britto Dhas, J. Phys. Chem. C 125, 25217–25226 (2021). https://doi.org/10.1021/acs.jpcc.1c07015

    Article  CAS  Google Scholar 

  27. A. Sivakumar, S. Sahaya Jude Dhas, P. Sivaprakash, S. Prabhu, K. Moovendaran, A. Murugeswari, S. Arumugam, S.A. Martin Britto Dhas, J. Mol. Struct. 1271, 134033 (2023). https://doi.org/10.1016/j.molstruc.2022.134033

    Article  CAS  Google Scholar 

  28. Yu.I. Meshcheryakov, A.K. Divakov, S.A. Atroshenko, N.S. Naumova, Tech. Phys. Lett. 36, 1125–1128 (2010). https://doi.org/10.1134/S1063785010120187

    Article  CAS  Google Scholar 

  29. S. Atroshenko, AIP Conf. Proc. 1748, 030005 (2016). https://doi.org/10.1063/1.4954351

    Article  Google Scholar 

  30. M. Alagar, R.V. Krishnakumar, M.S. Nandhini, S. Natarajan, Acta Crystallogr. E57, 0855–0857 (2001). https://doi.org/10.1107/S1600536801013149

    Article  CAS  Google Scholar 

  31. A. Sivakumar, A. Saranraj, S. Sahaya Jude Dhas, M. Jose, K. Kamala Bharathi, S.A. Martin Britto Dhas, Opt. Eng. 58, 107101 (2019). https://doi.org/10.1117/1.OE.58.10.107101

    Article  Google Scholar 

  32. K. Showrilu, C. Jyothirmai, A. Sirisha, A. Sivakumar, S. Sahaya Jude Dhas, S.A. Martin Britto Dhas, J. Mater. Sci. Mater. Electron. 32, 3903–3911 (2021). https://doi.org/10.1007/s10854-020-05133-5

    Article  CAS  Google Scholar 

  33. E.S. Kim, C.J. Jeon, IEEE Trans. Ultrason. 58, 1939–1946 (2011). https://doi.org/10.1109/TUFFC.2011.2034

    Article  Google Scholar 

  34. Kurnia, Heriansyah, E. Suharyadi, IOP Conf. Ser. Mater. Sci. Eng. 202, 012046 (2017). https://doi.org/10.1088/1757-899X/202/1/012046

  35. A. Sivakumar, M. Manivannan, S. Sahaya Jude Dhas, J. Kalyana Sundar, M. Jose, S.A. Martin Britto Dhas, Mater. Res. Express 6, 086303 (2019). https://doi.org/10.1088/2053-1591/ab1c96

    Article  CAS  Google Scholar 

  36. A. Sivakumar, S. Sahaya Jude Dhas, S. Balachandar, S.A. Martin Britto Dhas, Z. Kristal Cryst. Mater. 234, 557–567 (2019). https://doi.org/10.1515/zkri-2018-2159

    Article  CAS  Google Scholar 

  37. M.R. Baklanov, K. Maex, Philos. Trans. R. Soc. A 364, 201–215 (2006). https://doi.org/10.1098/rsta.2005.1679

    Article  CAS  Google Scholar 

  38. M.H. Al-Saleh, H.K. Al-Anid, Y.A. Husain, H.M. El-Ghanem, S. Abdul Jawad, J. Phys. D Appl. Phys. 46, 385305–385315 (2013). https://doi.org/10.1088/0022-3727/46/38/385305

    Article  CAS  Google Scholar 

  39. M. Kumar, N. Srivastava, J. Non-Cryst. Solids 389, 28 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.02.002

    Article  CAS  Google Scholar 

  40. K. Sankaranarayanan, J. Cryst. Growth 284, 203–208 (2005). https://doi.org/10.1016/j.jcrysgro.2005.07.019

    Article  CAS  Google Scholar 

  41. A. Sivakumar, S. Balachandar, S.A. Martin Britto Dhas, Hum. Factors Mech. Eng. Def. Saf. 4, 3 (2020). https://doi.org/10.1007/s41314-019-0033-5

    Article  Google Scholar 

  42. E.F. Greene, J. Chem. Educ. 41(2), 114 (1964). https://doi.org/10.1021/ed041p114.3

    Article  Google Scholar 

Download references

Funding

The authors thank the Management of Sacred Heart College for the financial support through Fr.Carreno Research Grant (SHC/Fr. Carreno Research Grant/2022/01) and Don Bosco Research Grant (SHC/DB Grant/2021/01).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [MD], [SSJD], and [SAMBD]. The first draft of the manuscript was written by [MD] and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to S. A. Martin Britto Dhas.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, M., Sahaya Jude Dhas, S. & Martin Britto Dhas, S.A. Impact of shock waves on morphological, structural, optical and dielectric properties of l-alaninium maleate crystals. Journal of Materials Research 38, 4303–4313 (2023). https://doi.org/10.1557/s43578-023-01143-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01143-1

Keywords

Navigation