Skip to main content
Log in

Preparation of lightweight, high hardness multi-component systems induced by partial oxidation and hard intermetallic phase formation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The ternary Mg–Al–Ti and quaternary Mg–Al–Ti–Cu systems were prepared by mechanical alloying in oxygen-lean atmosphere followed by spark plasma sintering. The ternary Mg–Al–Ti and quaternary Mg–Al–Ti–Cu systems which were sintered at 750 °C after 16 h milling showed the highest hardness of 509 and 947 HV with low densities of 2.9 and 3.9 g/cm3, respectively. The decrease in particle size and uniform dispersion of elements through optimization of the MA process induced the formation of uniform composite microstructure after SPS. Moreover, the addition of the fourth element, Cu, showed a significant impact on the improvement in hardness. This result was explained from the perspective of the microstructure and the electronic nature of elements. Our results provide a facile method for synthesizing oxide/metal composites from elemental powders without a separate oxidation process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files). If any additional data are needed, it may be provided upon request.

Code availability

Not applicable.

References

  1. A. Kumar, M. Gupta, Metals 6(9), 199 (2016). https://doi.org/10.3390/met6090199

    Article  CAS  Google Scholar 

  2. R. Li, J.C. Gao, K. Fan, Microstructure and mechanical properties of MgMnAlZnCu high entropy alloy cooling in three conditions. Mater. Sci. Forum 686, 235–241 (2011)

    Article  CAS  Google Scholar 

  3. K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, Mater. Res. Lett. 3(2), 95–99 (2015). https://doi.org/10.1080/21663831.2014.985855

    Article  CAS  Google Scholar 

  4. K. Tseng, Y. Yang, C. Juan, T. Chin, C. Tsai, J. Yeh, Sci. China Technol. Sci. 61(2), 184–188 (2017). https://doi.org/10.1007/s11431-017-9073-0

    Article  CAS  Google Scholar 

  5. H. Clemens, S. Mayer, C. Scheu, Neutrons and synchrotron radiation in engineering materials science: from fundamentals to applications, (2017), pp. 1–20. https://doi.org/10.1002/9783527684489.ch1

  6. S.-H. Jhi, J. Ihm, S.G. Louie, M.L. Cohen, Nature 399(6732), 132–134 (1999). https://doi.org/10.1038/20148

    Article  CAS  Google Scholar 

  7. Y. Liu, Z. Yao, P. Zhang, S. Lin, M. He, S. Lu, X. Wu, Mater. Des. (2022). https://doi.org/10.1016/j.matdes.2022.111565

    Article  Google Scholar 

  8. P. Mao, B. Yu, Z. Liu, F. Wang, Y. Ju, J. Magnes. Alloy 1(3), 256–262 (2013). https://doi.org/10.1016/j.jma.2013.10.001

    Article  CAS  Google Scholar 

  9. M. Hadi, S. Naqib, S.-R. Christopoulos, A. Chroneos, A. Islam, J. Alloys Compd. 724, 1167–1175 (2017). https://doi.org/10.1016/j.jallcom.2017.07.110

    Article  CAS  Google Scholar 

  10. Y. Tong, L. Bai, X. Liang, Y. Chen, Z. Zhang, J. Liu, Y. Li, Y. Hu, Intermetallics 126, 106928 (2020). https://doi.org/10.1016/j.intermet.2020.106928

    Article  CAS  Google Scholar 

  11. B. Daniel, V. Murthy, G. Murty, J. Mater. Process. Technol. 68(2), 132–155 (1997). https://doi.org/10.1016/S0924-0136(96)00020-9

    Article  Google Scholar 

  12. V. Murthy, B. Rao, J. Mater. Sci. 30(12), 3091–3097 (1995). https://doi.org/10.1007/BF01209222

    Article  CAS  Google Scholar 

  13. Q. Wan, F. Li, W. Wang, J. Hou, W. Cui, Y. Li, Materials 12(12), 1967 (2019). https://doi.org/10.3390/ma12121967

    Article  CAS  Google Scholar 

  14. F. Salemi, M. Abbasi, F. Karimzadeh, J. Alloys Compd. 685, 278–286 (2016). https://doi.org/10.1016/j.jallcom.2016.05.274

    Article  CAS  Google Scholar 

  15. A. Eldesouky, M. Johnsson, H. Svengren, M. Attallah, H. Salem, J. Alloys Compd. 609, 215–221 (2014). https://doi.org/10.1016/j.jallcom.2014.04.136

    Article  CAS  Google Scholar 

  16. P. Yu, L. Zhang, H. Cheng, H. Zhang, M. Ma, Y. Li, G. Li, P. Liaw, R. Liu, Intermetallics 70, 82–87 (2016). https://doi.org/10.1016/j.intermet.2015.11.005

    Article  CAS  Google Scholar 

  17. A.A. Aldoshan, Spark Plasma Sintering of Titanium Aluminide Intermetallics and Its Composites (Oklahoma State University, Stillwater, 2012)

    Google Scholar 

  18. E.A. Olevsky, S. Kandukuri, L. Froyen, J. Appl. Phys. 102(11), 114913 (2007). https://doi.org/10.1063/1.2822189

    Article  CAS  Google Scholar 

  19. C. Suryanarayana, Prog. Mater. Sci. 46(1–2), 1–184 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  20. D. Singh, C. Suryanarayana, L. Mertus, R.-H. Chen, Intermetallics 11(4), 373–376 (2003). https://doi.org/10.1016/S0966-9795(03)00005-0

    Article  CAS  Google Scholar 

  21. I. Moravcik, J. Cizek, P. Gavendova, S. Sheikh, S. Guo, I. Dlouhy, Mater. Lett. 174, 53–56 (2016). https://doi.org/10.1016/j.matlet.2016.03.077

    Article  CAS  Google Scholar 

  22. L. Zhang, X. Guo, Mater. Trans. 59(4), 528–537 (2018). https://doi.org/10.2320/matertrans.MJ201609

    Article  CAS  Google Scholar 

  23. S.M. Zebarjad, S. Sajjadi, Mater. Des. 27(8), 684–688 (2006). https://doi.org/10.1016/j.matdes.2004.12.011

    Article  CAS  Google Scholar 

  24. G.T. Motsi, S. Guillemet-Fritsch, G. Chevallier, M.B. Shongwe, P.A. Olubambi, C. Estournès, Powder Technol. 345, 415–424 (2019)

    Article  CAS  Google Scholar 

  25. B. Chen, H. Xiong, B. Sun, S. Tang, B. Du, N. Li, Prog. Nat. Sci. Mater. 24(4), 313–320 (2014). https://doi.org/10.1016/j.pnsc.2014.06.003

    Article  CAS  Google Scholar 

  26. Z. Li, L. Luo, Y. Su, B. Wang, L. Wang, T. Liu, M. Yao, C. Liu, J. Guo, H. Fu, Prog. Nat. Sci. Mater. 32, 345–357 (2022). https://doi.org/10.1016/j.pnsc.2022.03.004

    Article  CAS  Google Scholar 

  27. M. Khan, L. Brown, M. Chaudhri, J. Phys. D 25(1A), A257 (1992). https://doi.org/10.1088/0022-3727/25/1A/039

    Article  CAS  Google Scholar 

  28. R. Shiue, S. Wu, S. Chen, Acta Mater. 51(7), 1991–2004 (2003). https://doi.org/10.1016/S1359-6454(02)00606-7

    Article  CAS  Google Scholar 

  29. F. Stein, A. Leineweber, J. Mater. Sci. 56(9), 5321–5427 (2021). https://doi.org/10.1007/s10853-020-05509-2

    Article  CAS  Google Scholar 

  30. A. Takeuchi, A. Inoue, Mater. Trans. JIM 41(11), 1372–1378 (2000). https://doi.org/10.2320/matertrans1989.41.1372

    Article  CAS  Google Scholar 

  31. J. Fuggle, Surf. Sci. 69(2), 581–608 (1977). https://doi.org/10.1016/0039-6028(77)90135-2

    Article  CAS  Google Scholar 

  32. A. Le Febvrier, J. Jensen, P. Eklund, J. Vac. Sci. Technol. A (2017). https://doi.org/10.1116/1.4975595

    Article  Google Scholar 

  33. S.L. Sing, W.Y. Yeong, F.E. Wiria, J. Alloys Compd. 660, 461–470 (2016). https://doi.org/10.1016/j.jallcom.2015.11.141

    Article  CAS  Google Scholar 

  34. F.C. Walsh, Trans. IMF 69(3), 107–110 (1991). https://doi.org/10.1080/00202967.1991.11870904

    Article  CAS  Google Scholar 

  35. S. Guicciardi, A. Balbo, D. Sciti, C. Melandri, G. Pezzotti, J. Eur. Ceram. Soc. 27(2–3), 1399–1404 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.05.057

    Article  CAS  Google Scholar 

  36. L. Ivanova, P. Aleksandrov, K. Demakov, Inorg. Mater. 42, 1205–1209 (2006). https://doi.org/10.1134/S0020168506110069

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by “Knowledge Hub Aichi”, Priority Research Project from Aichi Prefectural Government. We would like to thank Takahiko Kato, Ph.D., Masao Tabuchi, Ph.D., Yoshio Watanabe, Ph.D., Takeshi Hagio, Ph.D., and Kyusung Kim, Ph.D., for valuable advice on characterization.

Funding

This research was financially supported by Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA, Grant No. JPMJOP1843) and Strategic International Collaborative Research Program (SICORP, Grant No. JPMJSC18H1) of Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chayanaphat Chokradjaroen or Nagahiro Saito.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1059 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Chokradjaroen, C., Sawada, Y. et al. Preparation of lightweight, high hardness multi-component systems induced by partial oxidation and hard intermetallic phase formation. Journal of Materials Research 38, 4235–4246 (2023). https://doi.org/10.1557/s43578-023-01137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01137-z

Keywords

Navigation