Skip to main content
Log in

Modelling of flow stresses during hot deformation of Ti–6Al–4Mo–1V–0.1Si alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present study describes the hot deformation behaviour of a novel Ti–6Al–4Mo–1V–0.1Si alloy. The flow characteristics of the alloy were investigated in the strain rate range of 0.01 s−1 to 10 s−1 and at temperatures ranging from 800 to 1050 °C. The increase in deformation temperature and decrease in strain rate results in gradual decrease of flow stress. Flow softening was observed for deformation at lower temperatures (800–900 °C) due to lamellae kinking, whereas flat flow curve characteristics were observed for deformation at higher temperatures (950–1050 °C) due to a balance of dynamic recovery and recrystallization. The flow stress characteristics during hot deformation were predicted using constitutive modelling based on the Arrhenius hyperbolic sine equation. The strain rate sensitivity map was created for 0.69 strain. The optimum hot deformation zone was observed at 0.01 s−1 in the temperature range (925–1050 °C), and at strain rates of 1 s−1 and 5 s−1 from 900 to 975 °C.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. A.K. Nag, K.V.U. Praveen, V. Singh, Effect of heat treatment on tensile behaviour of Ti–6Al–5Zr–0.5Mo–0.25Si alloy. Bull. Mater. Sci. 29, 147–154 (2006)

    Article  CAS  Google Scholar 

  2. M. Saood, K.M. Ibrahim, E. El-Kashif, M. Shoeib, A. Elshalakany, M.S. Mohamed, Mechanical behavior and corrosion properties of Ti–7Mo–8Nb alloy for biomedical applications. Mater. Res. Express (2021). https://doi.org/10.1088/2053-1591/ac2346

    Article  Google Scholar 

  3. T. Alloy, Q. Wang, X. Lei, M. Hu, X. Xu, R. Yang, L. Dong, Effect of heat treatment on microstructure and tensile property, 1–12 (2021)

  4. X. Yang, C.R. Hutchinson, Corrosion-wear of β-Ti alloy TMZF (Ti–12Mo–6Zr–2Fe) in simulated body fluid. Acta Biomater. 42, 429–439 (2016). https://doi.org/10.1016/j.actbio.2016.07.008

    Article  CAS  Google Scholar 

  5. M. Atapour, A. Pilchak, G.S. Frankel, J.C. Williams, Corrosion behaviour of investment cast and friction stir processed Ti–6Al–4V. Corros. Sci. 52, 3062–3069 (2010). https://doi.org/10.1016/j.corsci.2010.05.026

    Article  CAS  Google Scholar 

  6. M. Atapour, A.L. Pilchak, M. Shamanian, M.H. Fathi, Corrosion behavior of Ti–8Al–1Mo–1V alloy compared to Ti–6Al–4V. Mater. Des. 32, 1692–1696 (2011). https://doi.org/10.1016/j.matdes.2010.09.009

    Article  CAS  Google Scholar 

  7. A. Gupta, R.K. Khatirkar, A. Kumar, M.S. Parihar, Investigations on the effect of heating temperature and cooling rate on evolution of microstructure in an α + β titanium alloy. J. Mater. Res. 33, 946–957 (2018). https://doi.org/10.1557/jmr.2018.54

    Article  CAS  Google Scholar 

  8. Z.X. Zhang, S.J. Qu, A.H. Feng, J. Shen, D.L. Chen, Hot deformation behavior of Ti–6Al–4V alloy: effect of initial microstructure. J. Alloys Compd. 718, 170–181 (2017). https://doi.org/10.1016/j.jallcom.2017.05.097

    Article  CAS  Google Scholar 

  9. E.B. Shell, S.L. Semiatin, Effect of initial microstructure on plastic flow and dynamic globularization during hot working of Ti–6Al–4V. Metall. Mater. Trans. A 30, 3219–3229 (1999). https://doi.org/10.1007/s11661-999-0232-4

    Article  Google Scholar 

  10. W.J. Kim, H.T. Jeong, Construction of processing maps combined with deformation mechanism maps using creep deformation equations. J. Mater. Res. Technol. 9, 13434–13449 (2020). https://doi.org/10.1016/j.jmrt.2020.09.023

    Article  Google Scholar 

  11. Y. Kim, Y.-B. Song, S.H. Lee, Y. Kwon, Characterization of the hot deformation behavior and microstructural evolution of Ti–6Al–4V sintered preforms using materials modeling techniques. J. Alloys Compd. 676, 15–25 (2016). https://doi.org/10.1016/j.jallcom.2016.03.146

    Article  CAS  Google Scholar 

  12. Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Microstructural modeling and process control during hot working of commercial Ti–6A1–4V: response of lamellar and equiaxed starting microstructures. Mater. Manuf. Process. 15, 581–604 (2000). https://doi.org/10.1080/10426910008913007

    Article  CAS  Google Scholar 

  13. F. Waqar, S. Nitesh, R. Jaladurgam, V.A. Kumar, R. Kumar, Hot deformation characteristics and microstructure evolution. Int. J. Adv. Eng. Sci. Appl. Math. 13, 49–62 (2021). https://doi.org/10.1007/s12572-020-00283-5

    Article  Google Scholar 

  14. W. Zhang, H. Ding, J. Zhao, B. Yang, W. Yang, Hot deformation behavior and processing maps of Ti–6Al–4V alloy with starting fully lamellar structure. J. Mater. Res. 33, 3677–3688 (2018). https://doi.org/10.1557/jmr.2018.331

    Article  CAS  Google Scholar 

  15. P. Gao, M. Fu, M. Zhan, Z. Lei, Y. Li, Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: a review. J. Mater. Sci. Technol. 39, 56–73 (2020). https://doi.org/10.1016/j.jmst.2019.07.052

    Article  CAS  Google Scholar 

  16. J.S. Jha, B. Jayabalan, S.P. Toppo, R. Singh, A. Tewari, S.K. Mishra, Hot deformation behaviour of Ti–6Al–4V alloy with a transformed microstructure: a multimodal characterisation. Philos. Mag. 99, 1429–1459 (2019). https://doi.org/10.1080/14786435.2019.1584409

    Article  CAS  Google Scholar 

  17. E.B. Shell, S.L. Semiatin, Effect of initial microstructure on plastic flow and dynamic globularization during hot working of Ti–6AI–4V. Metall. Mater. Trans. A 30, 3219–3229 (1999). https://doi.org/10.1007/s11661-999-0232-4

    Article  Google Scholar 

  18. H.Q. Chen, C.X. Cao, L. Guo, H. Lin, Hot deformation mechanism and microstructure evolution of TC11 titanium alloy in β field. Trans. Nonferr. Met. Soc. China (Engl. Ed.) 18, 1021–1027 (2008). https://doi.org/10.1016/S1003-6326(08)60175-2

    Article  CAS  Google Scholar 

  19. A.J. Ardell, Microstructural stability at elevated temperatures. J. Eur. Ceram. Soc. 19, 2217–2231 (1999). https://doi.org/10.1016/S0955-2219(99)00094-1

    Article  CAS  Google Scholar 

  20. W. Yang, W. Ji, Z. Zhou, A. Hao, L. Qing, H. Hao, J. Xu, Analysis of deformation behavior and microstructure changes for α/β titanium alloy at elevated temperature. Metals (Basel) 11, 1–16 (2021). https://doi.org/10.3390/met11020303

    Article  CAS  Google Scholar 

  21. M. Villa, J.W. Brooks, R.P. Turner, H. Wang, F. Boitout, R.M. Ward, Microstructural modeling of the α + β phase in Ti–6Al–4V: a diffusion-based approach. Metall. Mater. Trans. B 50, 2898–2911 (2019). https://doi.org/10.1007/s11663-019-01675-0

    Article  CAS  Google Scholar 

  22. Z. Xiao, Q. Wang, Y. Huang, J. Hu, M. Li, Hot deformation characteristics and processing parameter optimization of Al–6.32Zn–2.10Mg alloy using constitutive equation and processing map. Metals (Basel) 11, 1–18 (2021). https://doi.org/10.3390/met11020360

    Article  CAS  Google Scholar 

  23. M. Murugesan, D.W. Jung, Two flow stress models for describing hot deformation behavior of AISI-1045 medium carbon steel at elevated temperatures. Heliyon 5, e01347 (2019). https://doi.org/10.1016/j.heliyon.2019.e01347

    Article  CAS  Google Scholar 

  24. R.M. Miller, T.R. Bieler, S.L. Semiatin, Flow softening during hot working of Ti–6Al–4V with a lamellar colony microstructure. Scr. Mater. 40, 1387–1393 (1999). https://doi.org/10.1016/S1359-6462(99)00061-5

    Article  CAS  Google Scholar 

  25. S. Ghosh, M.C. Somani, D. Setman, S. Mula, Hot deformation characteristic and strain dependent constitutive flow stress modelling of Ti + Nb stabilized interstitial free steel. Met. Mater. Int. 27, 2481–2498 (2021). https://doi.org/10.1007/s12540-020-00827-1

    Article  CAS  Google Scholar 

  26. H. Egner, W. Egner, Modeling of a tempered martensitic hot work tool steel behavior in the presence of thermo-viscoplastic coupling. Int. J. Plast. 57, 77–91 (2014). https://doi.org/10.1016/j.ijplas.2014.03.002

    Article  CAS  Google Scholar 

  27. J.A. Rodríguez-Martínez, A. Rusinek, R. Pesci, R. Zaera, Experimental and numerical analysis of the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles. Int. J. Solids Struct. 50, 339–351 (2013). https://doi.org/10.1016/j.ijsolstr.2012.09.019

    Article  CAS  Google Scholar 

  28. I. Papatriantafillou, M. Agoras, N. Aravas, G. Haidemenopoulos, Constitutive modeling and finite element methods for TRIP steels. Comput. Methods Appl. Mech. Eng. 195, 5094–5114 (2006). https://doi.org/10.1016/j.cma.2005.09.026

    Article  Google Scholar 

  29. S.L. Semiatin, J.F. Thomas, P. Dadras, Processing–microstructure relationships for Ti–6Al–2Sn–4Zr–2Mo–0.1Si. Metall. Trans. A 14, 2363–2374 (1983). https://doi.org/10.1007/BF02663312

    Article  Google Scholar 

  30. S. Semiatin, V. Seetharaman, I. Weiss, Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure. Mater. Sci. Eng. A 263, 257–271 (1999). https://doi.org/10.1016/S0921-5093(98)01156-3

    Article  Google Scholar 

  31. D. Mahadule, R.K. Khatirkar, A. Gupta, R. Kumar, Effect of heating temperature and cooling rate on the microstructure and mechanical properties of a Mo-rich two phase α + β titanium alloy. J. Mater. Res. 36, 751–763 (2021). https://doi.org/10.1557/s43578-020-00100-6

    Article  CAS  Google Scholar 

  32. D. Mahadule, R.K. Khatirkar, S.K. Gupta, A. Gupta, T.R. Dandekar, Microstructure evolution and corrosion behaviour of a high Mo containing α + β titanium alloy for biomedical applications. J. Alloys Compd. 912, 165240 (2022). https://doi.org/10.1016/j.jallcom.2022.165240

    Article  CAS  Google Scholar 

  33. F.W. Syed, V. Anil Kumar, R.K. Gupta, A.K. Kanjarla, Role of microstructure on the tension/compression asymmetry in a two-phase Ti–5Al–3Mo–1.5V titanium alloy. J. Alloys Compd. 795, 151–162 (2019). https://doi.org/10.1016/j.jallcom.2019.04.272

    Article  CAS  Google Scholar 

  34. T.R. Dandekar, R.K. Khatirkar, A. Gupta, N. Bibhanshu, A. Bhadauria, S. Suwas, Strain rate sensitivity behaviour of Fe–21Cr–1.5Ni–5Mn alloy and its constitutive modelling. Mater. Chem. Phys. 271, 124948 (2021). https://doi.org/10.1016/j.matchemphys.2021.124948

    Article  CAS  Google Scholar 

  35. I. Weiss, S.L. Semiatin, Thermomechanical processing of alpha titanium alloys—an overview. Mater. Sci. Eng. A 263, 243–256 (1999)

    Article  Google Scholar 

  36. R. Yu, P. Wang, G. Li, M. Fang, G. Xu, M. Zhang, Correction and modeling of flow stress during hot deformation of 7055 aluminum alloy. J. Mater. Eng. Perform. (2022). https://doi.org/10.1007/s11665-022-06699-3

    Article  Google Scholar 

  37. Q. Fu, W. Yuan, W. Xiang, Constitutive relationship for hot deformation of TB18 titanium alloy. Adv. Mater. Sci. Eng. (2020). https://doi.org/10.1155/2020/5716548

    Article  Google Scholar 

  38. Z. Yang, W. Yu, S. Lang, J. Wei, G. Wang, P. Ding, Hot deformation behavior and processing maps of a new Ti–6Al–2Nb–2Zr–0.4B titanium alloy. Materials (Basel) 3, 1 (2021). https://doi.org/10.3390/ma14092456

    Article  CAS  Google Scholar 

  39. A. Momeni, S. Kazemi, A. Bahrani, Hot deformation behavior of microstructural constituents in a duplex stainless steel during high-temperature straining. Int. J. Miner. Metall. Mater. 20, 953–960 (2013). https://doi.org/10.1007/s12613-013-0820-6

    Article  CAS  Google Scholar 

  40. S. Kingklang, V. Uthaisangsuk, Investigation of hot deformation behavior of duplex stainless steel grade 2507. Metall. Mater. Trans. A 48, 95–108 (2017). https://doi.org/10.1007/s11661-016-3829-4

    Article  CAS  Google Scholar 

  41. H. Mirzadeh, A. Najafizadeh, Hot deformation and dynamic recrystallization of 17–4 PH stainless steel. ISIJ Int. 53, 680–689 (2013). https://doi.org/10.2355/isijinternational.53.680

    Article  CAS  Google Scholar 

  42. J. Zhang, H. Di, H. Wang, K. Mao, T. Ma, Y. Cao, Hot deformation behavior of Ti-15-3 titanium alloy: a study using processing maps, activation energy map, and Zener–Hollomon parameter map. J. Mater. Sci. 47, 4000–4011 (2012). https://doi.org/10.1007/s10853-012-6253-1

    Article  CAS  Google Scholar 

  43. G. Shi, Y. Zhang, H. Liu, X. Li, G. Wang, Z. Li, L. Yan, K. Wen, B. Xiong, Constructing processing maps for hot deformation and microstructural evolution of Al–Zn–Mg–Cu alloys. Mater. Res. Express 6, 096566 (2019). https://doi.org/10.1088/2053-1591/ab2fb4

    Article  CAS  Google Scholar 

  44. Y.V.R.K. Prasad, T. Seshacharyulu, Processing maps for hot working of titanium alloys. Mater. Sci. Eng. A 243, 82–88 (1998). https://doi.org/10.1016/s0921-5093(97)00782-x

    Article  Google Scholar 

  45. F. Wu, W. Xu, X. Jin, X. Zhong, X. Wan, D. Shan, B. Guo, Study on hot deformation behavior and microstructure evolution of Ti55 high-temperature titanium alloy. Metals (Basel) (2017). https://doi.org/10.3390/met7080319

    Article  Google Scholar 

  46. Y. Jiang, Y.C. Lin, G. Wang, G. Pang, M. Chen, Z. Huang, Microstructure evolution and a unified constitutive model for a Ti-55511 alloy deformed in β region. J. Alloys Compd. 870, 159534 (2021). https://doi.org/10.1016/j.jallcom.2021.159534

    Article  CAS  Google Scholar 

  47. Y. Jiang, Y.C. Lin, X. Jiang, D. He, X. Zhang, Hot tensile properties, microstructure evolution and fracture mechanisms of Ti–6Al–4V alloy with initial coarse equiaxed phases. Mater. Charact. 163, 110272 (2020). https://doi.org/10.1016/j.matchar.2020.110272

    Article  CAS  Google Scholar 

  48. Y.C. Lin, Y. Xiao, Y. Jiang, G. Pang, H. Li, Spheroidization and dynamic recrystallization mechanisms of Ti-55511 alloy with bimodal microstructures during hot compression in α + β region. Mater. Sci. Eng. A 782, 139282 (2020). https://doi.org/10.1016/j.msea.2020.139282

    Article  CAS  Google Scholar 

  49. G. Su, Z. Yun, Y. Lin, D. He, S. Zhang, Z. Chen, Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates. Materials 14(22), 1–20 (2021)

    Article  CAS  Google Scholar 

  50. S. Ebied, A. Hamada, W. Borek, M. Gepreel, A. Chiba, High-temperature deformation behavior and microstructural characterization of high-Mn bearing titanium-based alloy. Mater. Charact. 139, 176–185 (2018). https://doi.org/10.1016/j.matchar.2018.03.004

    Article  CAS  Google Scholar 

  51. Y.F. Xia, S. Long, Y.T. Zhou, J. Zhao, T.Y. Wang, J. Zhou, Identification for the optimal working parameters of Ti–6Al–4V–0.1Ru alloy in a wide deformation condition range by processing maps based on DMM. Mater. Res. 19, 1449–1460 (2016). https://doi.org/10.1590/1980-5373-MR-2016-0448

    Article  CAS  Google Scholar 

  52. R. Ding, Z.X. Guo, A. Wilson, Microstructural evolution of a Ti–6Al–4V alloy during thermomechanical processing. Mater. Sci. Eng. A 327, 233–245 (2002). https://doi.org/10.1016/S0921-5093(01)01531-3

    Article  Google Scholar 

  53. I. Weiss, T. Sakai, J.J. Jonas, Effect of test method on transition from multiple to single peak dynamic recrystallization. Met. Sci. 18, 77–84 (1984). https://doi.org/10.1179/030634584790420249

    Article  CAS  Google Scholar 

  54. B. Liu, H. Matsumoto, Y.P. Li, Y. Koizumi, Y. Liu, A. Chiba, Dynamic phase transformation during hot-forging process of a powder metallurgy α + β titanium alloy. Mater. Trans. 53, 1007–1010 (2012). https://doi.org/10.2320/matertrans.M2012042

    Article  CAS  Google Scholar 

  55. L. He, A. Dehghan-Manshadi, R.J. Dippenaar, The evolution of microstructure of Ti–6Al–4V alloy during concurrent hot deformation and phase transformation. Mater. Sci. Eng. A 549, 163–167 (2012). https://doi.org/10.1016/j.msea.2012.04.025

    Article  CAS  Google Scholar 

  56. A. Dehghan-Manshadi, R.J. Dippenaar, Strain-induced phase transformation during thermo-mechanical processing of titanium alloys. Mater. Sci. Eng. A 552, 451–456 (2012). https://doi.org/10.1016/j.msea.2012.05.069

    Article  CAS  Google Scholar 

  57. Z. Guo, S. Malinov, W. Sha, Modelling beta transus temperature of titanium alloys using artificial neural network. Comput. Mater. Sci. 32, 1–12 (2005). https://doi.org/10.1016/j.commatsci.2004.05.004

    Article  CAS  Google Scholar 

  58. A. Kumar, A. Gupta, R.K. Khatirkar, N. Bibhanshu, S. Suwas, Strain rate sensitivity behaviour of a chrome–nickel austenitic–ferritic stainless steel and its constitutive modelling. ISIJ Int. 58, 1840–1849 (2018). https://doi.org/10.2355/isijinternational.ISIJINT-2018-051

    Article  CAS  Google Scholar 

  59. W. Baldwin, Metallography and microstructures. Metallogr. Microstruct. (2018). https://doi.org/10.31399/asm.hb.v09.9781627081771

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Director, VNIT Nagpur for providing the necessary facilities and constant encouragement to publish this paper.

Author information

Authors and Affiliations

Authors

Contributions

DM: Conceptualization, Methodology, Visualization, Investigation, Writing—Original Draft. DK: Methodology, Visualization, Writing—Review and Editing. TRD: Methodology, Visualization, Investigation. RKK: Conceptualization, Supervision, Writing—Review and Editing, Resources. SS: Supervision, Resources, Writing—Review and Editing.

Corresponding author

Correspondence to Rajesh K. Khatirkar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahadule, D., Kumar, D., Dandekar, T.R. et al. Modelling of flow stresses during hot deformation of Ti–6Al–4Mo–1V–0.1Si alloy. Journal of Materials Research 38, 3750–3763 (2023). https://doi.org/10.1557/s43578-023-01097-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01097-4

Keywords

Navigation