Skip to main content

Advertisement

Log in

Nanohybrid carbon nanodots-CuFe2O4 as selectively magnetofluorescent agent on tumor cells

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The magnetic material with carbon nanodots as magnetofluorescent multi-agents was an effective way to determine cellular information in clinical diagnosis systems. However, exploring hyaluronic acid (HA) on magnetofluorescent is limited in combining with CuFe2O4. The present study reports a new design contrast agent as a hybrid carbon nanodots (CNDs–CuFe2O4–HA) by combining the fluorescence carbon nanodots (CNDs) and copper ferrite (CuFe2O4) nanoparticles capsulated with HA. The as-prepared nanohybrid confirmed the unique properties through some important analytical techniques. The photoluminescence data showed an average diameter of the nanohybrid of about 104 nm and exhibited blue emission (λem = 420 nm). The hybrid also showed the superparamagnetic behavior and saturated magnetization (Ms) value of 0.63 emug−1, which increased the positive contrast on T1-weight relaxation of MRI as well as its specific targeting to the tumor assessed by confocal microscopy. The effective nanohybrid particles also described remarkable fluorescence and non-toxicity features that are useful for clinical diagnosis information.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article (and its supplementary information files).

References

  1. A. Avasthi, C. Caro, E. Pozo‑Torres, M.P. Leal, M.L. García‑Martín, Magnetic nanoparticles as MRI contrast agents. Surf.-Modified Nanobiomater. Electrochem. Biomed. Appl. 49 (2020).

  2. B. Issa, I.M. Obaidat, Magnetic nanoparticles as MRI contrast agents. Magn. Reson. Imaging. 378, 40 (2019)

    Google Scholar 

  3. A. Farooq, S. Sabah, S. Dhou, N. Alsawaftah, G. Husseini, Exogenous contrast agents in photoacoustic imaging: an in vivo review for tumor imaging. Nanomaterials 12(3), 393 (2022)

    Article  CAS  Google Scholar 

  4. A.B. Dias, C. O’Brien, J.-M. Correas, S. Ghai, Multiparametric ultrasound and micro-ultrasound in prostate cancer: a comprehensive review. Br. J. Radiol. 95(1131), 20210633 (2022)

    Article  Google Scholar 

  5. W. Zhang, L. Liu, H. Chen, K. Hu, I. Delahunty, S. Gao, J. Xie, Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 8(9), 2521 (2018)

    Article  CAS  Google Scholar 

  6. J. Pellico, C.M. Ellis, J.J. Davis, Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging. Contrast Med. Mol. Imaging. (2019)

  7. V.P. Grover, J.M. Tognarelli, M.M. Crossey, I.J. Cox, S.D. Taylor-Robinson, M.J. McPhail, Magnetic resonance imaging: principles and techniques: lessons for clinicians. J. Clin. Exp. Hepatol. 5(3), 246 (2015)

    Article  Google Scholar 

  8. Y. Huang, L. Li, D. Zhang, L. Gan, P. Zhao, Y. Zhang, Q. Zhang, M. Hua, C. Jia, Gadolinium-doped carbon quantum dots loaded magnetite nanoparticles as a bimodal nanoprobe for both fluorescence and magnetic resonance imaging. Magn. Resonan. Imaging 68, 113 (2020)

    Article  CAS  Google Scholar 

  9. D. Kim, K.S. Hong, J. Song, The present status of cell tracking methods in animal models using magnetic resonance imaging technology. Mol. Cells. 23(2) (2007)

  10. H.B. Na, I.C. Song, T. Hyeon, Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 21(21), 2133 (2009)

    Article  CAS  Google Scholar 

  11. N. Boda, G. Boda, K.C.B. Naidu, M. Srinivas, K.M. Batoo, D. Ravinder, A.P. Reddy, Effect of rare earth elements on low temperature magnetic properties of Ni and Co-ferrite nanoparticles. J. Magn. Magn. Mater. 473, 228 (2019)

    Article  CAS  Google Scholar 

  12. D.H.K. Reddy, Y.-S. Yun, Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord. Chem. Rev. 315, 90 (2016)

    Article  CAS  Google Scholar 

  13. S.M. Rathod, A.R. Chavan, S.S. Jadhav, K.M. Batoo, M. Hadi, E.H. Raslan, Ag+ ion substituted CuFe2O4 nanoparticles: analysis of structural and magnetic behavior. Chem. Phys. Lett. 765, 138308 (2021)

    Article  CAS  Google Scholar 

  14. K.M. Batoo, D. Salah, G. Kumar, A. Kumar, M. Singh, M. Abd El-Sadek, F.A. Mir, A. Imran, D.A. Jameel, Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 411, 91 (2016)

    Article  CAS  Google Scholar 

  15. G.H. Im, S.M. Kim, D.-G. Lee, W.J. Lee, J.H. Lee, I.S. Lee, Fe3O4/MnO hybrid nanocrystals as a dual contrast agent for both T1-and T2-weighted liver MRI. Biomaterials 34(8), 2069 (2013)

    Article  CAS  Google Scholar 

  16. S. Chapman, M. Dobrovolskaia, K. Farahani, A. Goodwin, A. Joshi, H. Lee, T. Meade, M. Pomper, K. Ptak, J. Rao, Nanoparticles for cancer imaging: the good, the bad, and the promise. Nano today. 8(5), 454 (2013)

    Article  CAS  Google Scholar 

  17. O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R.G. Ellenbogen, Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res. 69(15), 6200 (2009)

    Article  CAS  Google Scholar 

  18. N. Pothayee, S. Balasubramaniam, N. Pothayee, N. Jain, N. Hu, Y. Lin, R.M. Davis, N. Sriranganathan, A.P. Koretsky, J. Riffle, Magnetic nanoclusters with hydrophilic spacing for dual drug delivery and sensitive magnetic resonance imaging. J. Mater. Chem. B 1(8), 1142 (2013)

    Article  CAS  Google Scholar 

  19. X. Shi, T.P. Thomas, L.A. Myc, A. Kotlyar, J.R. Baker Jr., Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly (amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys. Chem. Chem. Phys. 9(42), 5712 (2007)

    Article  CAS  Google Scholar 

  20. A. Kumar, B. Sahoo, A. Montpetit, S. Behera, R.F. Lockey, S.S. Mohapatra, Development of hyaluronic acid–Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides. Nanomedicine 3(2), 132 (2007)

    Article  CAS  Google Scholar 

  21. M.A. Dobrovolskaia, S.E. McNeil, Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2(8), 469 (2007)

    Article  CAS  Google Scholar 

  22. D. Lachowicz, A. Szpak, K.E. Malek-Zietek, M. Kepczynski, R.N. Muller, S. Laurent, M. Nowakowska, S. Zapotoczny, Biocompatible and fluorescent superparamagnetic iron oxide nanoparticles with superior magnetic properties coated with charged polysaccharide derivatives. Colloids Surf. B 150, 402 (2017)

    Article  CAS  Google Scholar 

  23. M.Z. Fahmi, D.L.N. Wibowo, S.C.W. Sakti, H.V. Lee, Human serum albumin capsulated hydrophobic carbon nanodots as staining agent on HeLa tumor cell. Mater. Chem. Phys. 239, 122266 (2020)

    Article  CAS  Google Scholar 

  24. W. Wang, Y. Ni, Z. Xu, One-step uniformly hybrid carbon quantum dots with high-reactive TiO2 for photocatalytic application. J. Alloys Compds. 622, 303 (2015)

    Article  CAS  Google Scholar 

  25. S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49(38), 6726 (2010)

    Article  CAS  Google Scholar 

  26. Y.Y. Aung, A.N. Kristanti, S.Q. Khairunisa, N. Nasronudin, M.Z. Fahmi, Inactivation of HIV-1 infection through integrative blocking with amino phenylboronic acid attributed carbon dots. ACS Biomater. Sci. Eng. (2020)

  27. M.Z. Fahmi, A. Haris, A.J. Permana, D.L.N. Wibowo, B. Purwanto, Y.L. Nikmah, A. Idris, Bamboo leaf-based carbon dots for efficient tumor imaging and therapy. RSC Adv. 8(67), 38376 (2018)

    Article  CAS  Google Scholar 

  28. A.J. Permana, A. Haris, H. Setyawati, M.Z. Fahmi, Partial oxidative synthesis of fluorescent carbon derived from local bamboo leaves. J. Chem. Technol. Metall. 52(6), 1101 (2017)

    CAS  Google Scholar 

  29. Y. Kwee, A.N. Kristanti, N.S. Aminah, M.Z. Fahmi, Design of catechin-based carbon nanodots as facile staining agents of tumor cells. Indonesian J. Chem. 20(6), 1332 (2020)

    Article  CAS  Google Scholar 

  30. G. Supriyanto, N.K. Rukman, A.K. Nisa, M. Jannatin, B. Piere, A. Abdullah, M.Z. Fahmi, H.S. Kusuma, Graphene oxide from indonesian biomass: synthesis and characterization. BioResources 13(3), 4832 (2018)

    Article  CAS  Google Scholar 

  31. P. Sreenath, S. Mandal, S. Singh, H. Panigrahi, P. Das, A.K. Bhowmick, K.D. Kumar, Unique approach to debundle carbon nanotubes in polymer matrix using carbon dots for enhanced properties. Eur. Polym. J. 123, 109454 (2020)

    Article  CAS  Google Scholar 

  32. D. Liu, L. Yang, Z. Chen, G. Zou, H. Hou, J. Hu, X. Ji, Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries. Sci. Bull. (2020)

  33. J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48(31), 3686 (2012)

    Article  CAS  Google Scholar 

  34. A. Vibhute, O. Nille, G. Kolekar, S. Rohiwal, S. Patil, S. Lee, A.P. Tiwari, Fluorescent carbon quantum dots functionalized by poly l-lysine: efficient material for antibacterial, bioimaging and antiangiogenesis applications. J. Fluoresc. 32(5), 1789 (2022)

    Article  CAS  Google Scholar 

  35. A. Wibrianto, S.Q. Khairunisa, S.C. Sakti, Y.L. Ni’Mah, B. Purwanto, M.Z. Fahmi, Comparison of the effects of synthesis methods of B, N, S, and P-doped carbon dots with high photoluminescence properties on HeLa tumor cells. RSC Adv. 11(2), 1098 (2021)

    Article  CAS  Google Scholar 

  36. M.Z. Fahmi, R.A. Prasetya, M.F. Dzikri, S.C.W. Sakti, B. Yuliarto, MnFe2O4 nanoparticles/cellulose acetate composite nanofiber for controllable release of naproxen. Mater. Chem. Phys. 123055 (2020)

  37. W. Cheng, J. Nie, L. Xu, C. Liang, Y. Peng, G. Liu, T. Wang, L. Mei, L. Huang, X. Zeng, pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl. Mater. Interfaces 9(22), 18462 (2017)

    Article  CAS  Google Scholar 

  38. G. Tripodo, A. Trapani, M.L. Torre, G. Giammona, G. Trapani, D. Mandracchia, Hyaluronic acid and its derivatives in drug delivery and imaging: recent advances and challenges. Eur. J. Pharm. Biopharm. 97, 400 (2015)

    Article  CAS  Google Scholar 

  39. Y. Gokce, B. Cengiz, N. Yildiz, A. Calimli, Z. Aktas, Ultrasonication of chitosan nanoparticle suspension: Influence on particle size. Colloids Surf. A 462, 75 (2014)

    Article  CAS  Google Scholar 

  40. P. Nigam, S. Waghmode, M. Louis, S. Wangnoo, P. Chavan, D. Sarkar, Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J. Mater. Chem. B 2(21), 3190 (2014)

    Article  CAS  Google Scholar 

  41. Z. Shen, Y. Li, K. Kohama, B. Oneill, J. Bi, Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. Pharmacol. Res. 63(1), 51 (2011)

    Article  CAS  Google Scholar 

  42. Y. He, Y. Zhong, Y. Su, Y. Lu, Z. Jiang, F. Peng, T. Xu, S. Su, Q. Huang, C. Fan, Water-dispersed near-infrared-emitting quantum dots of ultrasmall sizes for in vitro and in vivo imaging. Angew. Chem. 123(25), 5813 (2011)

    Article  Google Scholar 

  43. S.M. Fotukian, A. Barati, M. Soleymani, A.M. Alizadeh, Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application. J. Alloys Compds. 816, 152548 (2020)

    Article  CAS  Google Scholar 

  44. Q. Wang, X. Huang, Y. Long, X. Wang, H. Zhang, R. Zhu, L. Liang, P. Teng, H. Zheng, Hollow luminescent carbon dots for drug delivery. Carbon 59, 192 (2013)

    Article  CAS  Google Scholar 

  45. M. Fahmi, W. Sukmayani, S.Q. Khairunisa, A. Witaningrum, D. Indriati, M. Matondang, J.-Y. Chang, T. Kotaki, M. Kameoka, Design of boronic acid-attributed carbon dots on inhibits HIV-1 entry. RSC Adv. 6(95), 92996 (2016)

    Article  CAS  Google Scholar 

  46. R. Justin, K. Tao, S. Román, D. Chen, Y. Xu, X. Geng, I.M. Ross, R.T. Grant, A. Pearson, G. Zhou, Photoluminescent and superparamagnetic reduced graphene oxide–iron oxide quantum dots for dual-modality imaging, drug delivery and photothermal therapy. Carbon 97, 54 (2016)

    Article  CAS  Google Scholar 

  47. T.P. Armedya, M.F. Dzikri, S.C.W. Sakti, A. Abdulloh, Y. Raharjo, S. Wafiroh, M.Z. Fahmi, Kinetical release study of copper ferrite nanoparticle incorporated on PCL/collagen nanofiber for naproxen delivery. Bionanoscience 9(2), 274 (2019)

    Article  Google Scholar 

  48. M. Tuerhong, X. Yang, Y. Xue-bo, Review on carbon dots and their applications. Chin. J. Anal. Chem. 45(1), 139 (2017)

    Article  Google Scholar 

  49. S. Sahu, N. Sinha, S.K. Bhutia, M. Majhi, S. Mohapatra, Luminescent magnetic hollow mesoporous silica nanotheranostics for camptothecin delivery and multimodal imaging. J. Mater. Chem. B 2(24), 3799 (2014)

    Article  CAS  Google Scholar 

  50. M. Sivakumar, A. Towata, K. Yasui, T. Tuziuti, T. Kozuka, Y. Iida, M.M. Maiorov, E. Blums, D. Bhattacharya, N. Sivakumar, Ultrasonic cavitation induced water in vegetable oil emulsion droplets—a simple and easy technique to synthesize manganese zinc ferrite nanocrystals with improved magnetization. Ultrason. Sonochem. 19(3), 652 (2012)

    Article  CAS  Google Scholar 

  51. M. Xu, S. Xu, Z. Yang, M. Shu, G. He, D. Huang, L. Zhang, L. Li, D. Cui, Y. Zhang, Hydrophilic and blue fluorescent N-doped carbon dots from tartaric acid and various alkylol amines under microwave irradiation. Nanoscale 7(38), 15915 (2015)

    Article  CAS  Google Scholar 

  52. D. Xiao, L. Xi, W. Yang, H. Fu, Z. Shuai, Y. Fang, J. Yao, Size-tunable emission from 1, 3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles. J. Am. Chem. Soc. 125(22), 6740 (2003)

    Article  CAS  Google Scholar 

  53. Y. Xu, X.-H. Jia, X.-B. Yin, X.-W. He, Y.-K. Zhang, Carbon quantum dot stabilized gadolinium nanoprobe prepared via a one-pot hydrothermal approach for magnetic resonance and fluorescence dual-modality bioimaging. Anal. Chem. 86(24), 12122 (2014)

    Article  CAS  Google Scholar 

  54. B. De, N. Karak, A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. Rsc Adv. 3(22), 8286 (2013)

    Article  CAS  Google Scholar 

  55. S. Pazokifard, S. Mirabedini, M. Esfandeh, S. Farrokhpay, Fluoroalkylsilane treatment of TiO2 nanoparticles in difference pH values: characterization and mechanism. Adv. Powder Technol. 23(4), 428 (2012)

    Article  CAS  Google Scholar 

  56. W. Gao, J. Zhang, Q. Xue, X. Yin, X. Yin, C. Li, Y. Wang, Acute and sub-acute toxicity study of graphene-based tumor cell nuclear Targeting fluorescent nanoprobe. Mol. Pharm. (2020)

  57. M.Z. Fahmi, N.F. Sholihah, A. Wibrianto, S.C. Sakti, F. Firdaus, J.-Y. Chang, Simple and fast design of folic acid-based carbon dots as theranostic agent and its drug release aspect. Mater. Chem. Phys. 267, 124596 (2021)

    Article  CAS  Google Scholar 

  58. C. Yu, T. Xuan, Y. Chen, Z. Zhao, X. Liu, G. Lian, H. Li, Gadolinium-doped carbon dots with high quantum yield as an effective fluorescence and magnetic resonance bimodal imaging probe. J. Alloys Compds. 688, 611 (2016)

    Article  CAS  Google Scholar 

  59. N. Gong, H. Wang, S. Li, Y. Deng, X.A. Chen, L. Ye, W. Gu, Microwave-assisted polyol synthesis of gadolinium-doped green luminescent carbon dots as a bimodal nanoprobe. Langmuir 30(36), 10933 (2014)

    Article  CAS  Google Scholar 

  60. M.Z. Fahmi, J.-K. Chen, C.-C. Huang, Y.-C. Ling, J.-Y. Chang, Phenylboronic acid-modified magnetic nanoparticles as a platform for carbon dot conjugation and doxorubicin delivery. J. Mater. Chem. B 3(27), 5532 (2015)

    Article  CAS  Google Scholar 

  61. S.M. Sharker, S.M. Kim, J.E. Lee, J.H. Jeong, I. In, K.D. Lee, H. Lee, S.Y. Park, In situ synthesis of luminescent carbon nanoparticles toward target bioimaging. Nanoscale 7(12), 5468 (2015)

    Article  CAS  Google Scholar 

  62. H.S.U. Usreg, A. Husein, M.Z. Fahmi, Uji Sitotosik Terhadap Sintesis Dan Karakterisasi Magnetik Nanopartikel CuFe2O4 Yang Dilingkupi Bovine Serum Albumin (BSA). Sci. J. Chem. Res. 4(1), 7 (2019)

    Google Scholar 

Download references

Acknowledgments

The authors thank Universitas Airlangga for research facilities and the Ministry of Research, Technology and Higher Education, Republic of Indonesia, for financial support under PPKI contract No. 304/UN3.14/PT/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mochamad Z. Fahmi.

Ethics declarations

Conflict of interest

The authors declare no competing interest in the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6402 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahmi, M.Z., Wibowo, D.L.N., Aung, Yy. et al. Nanohybrid carbon nanodots-CuFe2O4 as selectively magnetofluorescent agent on tumor cells. Journal of Materials Research 38, 3416–3428 (2023). https://doi.org/10.1557/s43578-023-01066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01066-x

Keywords

Navigation