Skip to main content
Log in

Electrochemical behavior of anodic nano-structured titania synthesized from stirred and unstirred electrolytes

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Titanium was anodically oxidized in aqueous electrolyte containing dissolved 1 M Na2SO4 and 0.5 wt% NaF. This oxidation was performed for 0.5 and 1 h at 20 and 30 V in unstirred and magnetic pellet stirred baths. Irrespective of the stirring conditions, amorphous, nanotubular oxide was formed at 20 V. Compared to the unstirred condition, the tubular length was increased upon stirring at 20 V. However, flat, anatase layers were produced at 30 V in both stirring conditions. The nanotube network was formed probably in first 5 min and disturbed later, so that the oxidation proceeds laterally and perpendicular to the longitudinal tubular axis. Among the oxides tested, the oxide films obtained by oxidation for 0.5 h at 20 and 30 V under stirring condition (M20, 0.5 and M30, 0.5) have higher impedance and lower corrosion current density in simulated body fluid (SBF). The SBF represents the actual conditions of fluid inside the body.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data and materials that support the findings of this study are available from the corresponding author.

Code availability

Not applicable.

References

  1. H. Ishizawa, M. Ogino, Formation and characterization of anodic titanium oxide films containing Ca and P. J. Biomed. Mater. Res. 29, 65–72 (1995). https://doi.org/10.1002/jbm.820290110

    Article  CAS  Google Scholar 

  2. M. Shirkhanzadeh, Electrochemical preparation of protective oxide coatings on titanium surgical alloys. J. Mater. Sci.—Mater. Med. 3, 322–325 (1992). https://doi.org/10.1007/BF00705362

    Article  CAS  Google Scholar 

  3. M. Long, H.J. Rack, Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19(18), 1621–1639 (1998). https://doi.org/10.1016/S0142-9612(97)00146-4

    Article  CAS  Google Scholar 

  4. S. Oh, S. Jin, Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Mater. Sci. Eng. C 26(8), 1301–1306 (2006). https://doi.org/10.1016/j.msec.2005.08.014

    Article  CAS  Google Scholar 

  5. H. Tsuchiya, J.M. Macak, A. Ghicov, L. Taveira, P. Schmuki, Self-organized porous TiO2 and ZrO2 produced by anodization. Corros. Sci. 47(12), 3324–3335 (2005). https://doi.org/10.1016/j.corsci.2005.05.041

    Article  CAS  Google Scholar 

  6. S. Yoriya, M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes. J. Phys. Chem. C 111(37), 13770–13776 (2007). https://doi.org/10.1021/jp074655z

    Article  CAS  Google Scholar 

  7. S. Oh, C. Daraio, L.-H. Chen, T.R. Pisanic, R.R. Finones, S. Jin, Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J. Biomed. Mater. Res. PART A 78, 97–103 (2006). https://doi.org/10.1002/jbm.a.30722

    Article  CAS  Google Scholar 

  8. V.S. Saji, H.C. Choe, W.A. Brantley, Nanotubular oxide layer formation on Ti–13Nb–13Zr alloy as a function of applied potential. J. Mater. Sci. 44, 3975–3982 (2009). https://doi.org/10.1007/s10853-009-3542-4

    Article  CAS  Google Scholar 

  9. A. Simchi, E. Tamjid, F. Pishbin, A.R. Boccaccini, Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed. Nanotechnol. Biol. Med. 7(1), 22–39 (2011). https://doi.org/10.1016/j.nano.2010.10.005

    Article  CAS  Google Scholar 

  10. V.S. Saji, H.C. Choe, Electrochemical corrosion behaviour of nanotubular Ti–13Nb–13Zr alloy in Ringer’s solution. Corros. Sci. 51(8), 1658–1663 (2009). https://doi.org/10.1016/j.corsci.2009.04.013

    Article  CAS  Google Scholar 

  11. R. Narayanan, J.-Y. Ha, T.-Y. Kwon, K.-H. Kim, Structure and Properties of self-organized TiO2 nanotubes from stirred baths. Metall. Mater. Trans. B 39, 493–499 (2008). https://doi.org/10.1007/s11663-008-9153-7

    Article  CAS  Google Scholar 

  12. R. Narayanan, T.-Y. Kwon, K.-H. Kim, Anodic TiO2 from stirred Na2SO4/NaF electrolytes: effect of applied voltage and stirring. Mater. Lett. 63(23), 2003–2006 (2009). https://doi.org/10.1016/j.matlet.2009.06.036

    Article  CAS  Google Scholar 

  13. L.V. Taveira, J.M. Macák, H. Tsuchiya, L.F.P. Dick, P. Schmuki, Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes. J. Electrochem. Soc. 152(10), B405–B410 (2005). https://doi.org/10.1149/1.2008980

    Article  CAS  Google Scholar 

  14. H. Uzal, A. Döner, Corrosion behavior of titanium dioxide nanotubes in alkaline solution. Prot. Met. Phys. Chem. Surf. 56, 311–319 (2020). https://doi.org/10.1134/S207020512002029X

    Article  CAS  Google Scholar 

  15. F.A.A. Al-Saady, S.A. Rushdi, A.H. Abbar, Improvement the corrosion behavior of titanium by nanotubular oxide in a simulated saliva solution. IOP Conf. Series Mater. Sci. Eng. 870, 012060 (2020). https://doi.org/10.1088/1757-899X/870/1/012060

    Article  CAS  Google Scholar 

  16. I.C. Turu, N. Cansever, Anodization of Ti6Al4V in water-ethylene glycol solution containing NH4F and its corrosion behavior in ringer’s solution. Int. J. of Electrochem. Sci. (2022). https://doi.org/10.20964/2022.06.33

    Article  Google Scholar 

  17. Z. Peng, J. Ni, Surface properties and bioactivity of TiO2 nanotube array prepared by two-step anodic oxidation for biomedical applications. Royal Soc. Open Sci. 6(181948), 1–15 (2019). https://doi.org/10.1098/rsos.181948

    Article  CAS  Google Scholar 

  18. J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. 44(45), 7463–7465 (2005). https://doi.org/10.1002/anie.200502781

    Article  CAS  Google Scholar 

  19. S.K. Mohapatra, K.S. Raja, M. Misra, V.K. Mahajan, M. Ahmadian, Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti–8Mn alloy. Electrochim. Acta. 53(2), 590–597 (2007). https://doi.org/10.1016/j.electacta.2007.04.123

    Article  CAS  Google Scholar 

  20. C.-S. Chien, Y.-C. Hung, T.-F. Hong, C.-C. Wu, T.-Y. Kuo, T.-M. Lee, T.-Y. Liao, H.-C. Lin, C.-H. Chuang, Preparation and characterization of porous bioceramic layers on pure titanium surfaces obtained by micro-arc oxidation process. Appl. Phys. A. 123(204), 1–10 (2017). https://doi.org/10.1007/s00339-017-0765-0

    Article  CAS  Google Scholar 

  21. M. Tamaddon, S. Samizadeh, L. Wang, G. Blunn, C. Liu, Intrinsic osteoinductivity of porous titanium scaffold for bone tissue engineering. J. Biomater. 5093063, 1–12 (2017). https://doi.org/10.1155/2017/5093063

    Article  CAS  Google Scholar 

  22. R.P. Nogueira, J. Deuzimar Uchoa, F. Hilario, G.F. Santana-Melo, L.M.R. de Vasconcellos, F.R. Marciano, V. Roche, A. Moreira Jorge Jr., A.O. Lobo, Characterization of optimized TiO2 nanotubes morphology for medical implants: biological activity and corrosion resistance. Int. J. Nanomed. 16, 667–682 (2021). https://doi.org/10.2147/IJN.S285805

    Article  Google Scholar 

  23. R.M. Souto, M.M. Laz, R.L. Reis, Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy. Biomaterials 24(23), 4213–4221 (2003). https://doi.org/10.1016/S0142-9612(03)00362-4

    Article  CAS  Google Scholar 

  24. R. Venugopalan, J.J. Weimer, M.A. George, L.C. Lucas, The effect of nitrogen diffusion hardening on the surface chemistry and scratch resistance of Ti-6Al-4V alloy. Biomaterials 21(16), 1669–1677 (2000). https://doi.org/10.1016/s0142-9612(00)00049-1

    Article  CAS  Google Scholar 

  25. S.L. de Assis, S. Wolynec, I. Costa, Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim. Acta. 51(8–9), 1815–1819 (2006). https://doi.org/10.1016/j.electacta.2005.02.121

    Article  CAS  Google Scholar 

  26. F. Richter, C-A. Schiller, N. Wagner, Current interrupt technique—Measuring low impedances at high frequencies. Electrochem. Appl. 1 (2002)

  27. C. Jaeggi, P. Kern, J. Michler, T. Zehnder, H. Siegenthaler, Anodic thin films on titanium used as masks for surface micropatterning of biomedical devices. Surf. Coat. Technol. 200(5–6), 1913–1919 (2005). https://doi.org/10.1016/j.surfcoat.2005.08.021

    Article  CAS  Google Scholar 

  28. A. Döner, Compparison of corrosion behaviors of bare Ti and TiO2. Emerg. Sci. J. 3(4), 235–240 (2019). https://doi.org/10.28991/esj-2019-01185

    Article  Google Scholar 

  29. L. Mohan, C. Anandan, N. Rajendran, Effect of plasma nitriding on structure and biocompatibility of self-organised TiO2 nanotubes on Ti–6Al–7Nb. RSC Adv. 5, 41763–41771 (2015). https://doi.org/10.1039/C5RA05818J

    Article  CAS  Google Scholar 

  30. C. Liu, Y. Wang, M. Wang, W. Huang, P.K. Chu, Electrochemical stability of TiO2 nanotubes with different diameters in artificial saliva. Surf. Coat. Technol. 206(1), 63–67 (2011). https://doi.org/10.1016/j.surfcoat.2011.06.038

    Article  CAS  Google Scholar 

  31. A.A. Al-Swayih, Electrochemical behavior of self-ordered titania nanotubes prepared by anodization as a promising material for biomedical applications. J. Am. Sci. 10(10), 165–173 (2014). https://doi.org/10.7537/marsjas101014.25

    Article  Google Scholar 

  32. A.R. Rafieerad, A.R. Bushroa, E. Zalnezhad, M. Sarraf, W.J. Basirun, S. Baradaran, B. Nasiri-Tabrizi, Microstructural development and corrosion behavior of self-organized TiO2 nanotubes coated on Ti–6Al–7Nb. Ceram. Int. 41(9), 10844–10855 (2015). https://doi.org/10.1016/j.ceramint.2015.05.025

    Article  CAS  Google Scholar 

  33. K.M. Deen, A. Farooq, M.A. Raza, W. Haider, Effect of electrolyte composition on TiO2 nanotubular structure formation and its electrochemical evaluation. Electrochim. Acta. 117, 329–335 (2014). https://doi.org/10.1016/j.electacta.2013.11.108

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrutyunjay Panigrahi.

Ethics declarations

Conflicts of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, R., Panigrahi, M. & Tae-Yub, K. Electrochemical behavior of anodic nano-structured titania synthesized from stirred and unstirred electrolytes. Journal of Materials Research 38, 3160–3171 (2023). https://doi.org/10.1557/s43578-023-01040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01040-7

Keywords

Navigation