Skip to main content
Log in

Corrosion Behavior of Titanium Dioxide Nanotubes in Alkaline Solution

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this study, titanium dioxide nanotubes (TiO2–NTs) are prepared by using anodization method on commercial pure titanium (Ti) by applying constant voltage of 60 V to the electrolysis system for 15 min, one and two hours. Highly ordered and quality TiO2–NTs layers are formed on Ti electrode. To investigate the corrosion behavior of TiO2–NTs in 1 M KOH solution, electrochemical and surface analysis methods such as anodic and cathodic current-potential curves, electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDX) are used. Effect of long immersion time is also studied. Obtained results showed that the corrosion behavior of TiO2–NTs is more improved when compared to bare Ti electrode. Very stable, durable and excellent protective TiO2–NT layer is obtained at anodization time of 1 h. This oxide layer resisted the aggressive solution attack. It is suggested that this oxide layer is used in many industrial applications to reduce the corrosion of commercial pure Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Lütjering, G., Williams, C.J., Titanium, Berlin: Springer, 2007.

    Google Scholar 

  2. Garbacz, H., Nanocrystalline Titanium, Elsevier, 2019.

    Google Scholar 

  3. Prusi, A., Arsov, L., Haran, B., and Popov, B.N., J. Electrochem. Soc., 2002, vol. 149, p. B491.

    Article  CAS  Google Scholar 

  4. Prando, D., Brenna, A., Diamanti, M.V., Beretta, S., Bolzoni, F., Ormellese, M., and Pedeferri, M., J. Appl. Biomater. Funct. Mater., 2018, vol. 16, pp. 3–13.

    CAS  Google Scholar 

  5. Le Guéhennec, L., Soueidan, A., Layrolle, P., and Amouriq, Y., Dent. Mater., 2007, vol. 23, pp. 844–854.

    Article  CAS  Google Scholar 

  6. Yang, Y., Ong, J.L., and Tian, J., Mater. Sci. Eng. C., 2002, vol. 20, pp. 117–124.

    Article  Google Scholar 

  7. Vercaigne, S., Wolke, J.G.C., Naert, I., and Jansen, J.A., Biomaterials, 1998, vol. 19, pp. 1093–1099.

    Article  CAS  Google Scholar 

  8. Montenere, A., Gnappi, G., Ferrari, F., and Cesari, M., J. Mater. Sci., 2000, vol. 35, pp. 2791–2797.

    Article  Google Scholar 

  9. Döşlü, S.T., Mert, B.D., and Yazıcı, B., Corros. Sci., 2013, vol. 66, pp. 51–58.

    Article  CAS  Google Scholar 

  10. Lei, B.-X., Zhang, P., Qiao, H.-K., Zheng, X.-F., et al., Electrochim. Acta, 2014, vol. 143, pp. 129–134.

    Article  CAS  Google Scholar 

  11. Baran, E. and Yazici, B., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 2498–2511.

    Article  CAS  Google Scholar 

  12. Sun, Y. and Yan, K.-P., Int. J. Hydrogen Energy, 2014, vol. 39, pp. 11368–11375.

    Article  CAS  Google Scholar 

  13. Alves, A.C., Wenger, F., Ponthiaux, P., Celis, J.-P., Pinto, A.M., and Rocha, L.A., Electrochim. Acta, 2017, vol. 234, pp. 16–27.

    Article  CAS  Google Scholar 

  14. Hanawa, T., Mater. Sci. Eng. A., 1999, vol. 267, pp. 260–266.

    Article  Google Scholar 

  15. Hanawa, T., Ukai, H., and Murakami, K., Asaoka, K., Mater. Trans.,JIM, 1995, vol. 36, pp. 438–444.

    CAS  Google Scholar 

  16. Pham, M., Maitz, M., Matz, W., Reuther, H., Richter, E., and Steiner, G., Thin Solid Films, 2000, vol. 379, pp. 50–56.

    Article  CAS  Google Scholar 

  17. Helsen, J.A. and Breme, H.J., Metals as Biomaterials, John Wiley and Sons, 1998.

    Google Scholar 

  18. Farghali, R.A., Fekry, A.M., Ahmed, R.A., and Elhakim, H.K.A., Int. J. Biol. Macromol., 2015, vol. 79, pp. 787–799.

    Article  CAS  Google Scholar 

  19. Jiang, W., Cui, H., and Song, Y., J. Mater. Sci., 2018, vol. 53, pp. 15130–15141.

    Article  CAS  Google Scholar 

  20. Vera, M.L., Linardi, E., Lanzani, L., Mendez, C., Schvezon, C.E., and Ares, A.E., Mater. Corros., 2014, vol. 66, pp. 1140–1149.

    Article  CAS  Google Scholar 

  21. Park, I.S., Woo, T.G., Jeon, W.Y., Park, H.H., Lee, M.H., Bae, T.S., and Seol, K.W., Electrochim. Acta, 2007, vol. 53, pp. 863–870.

    Article  CAS  Google Scholar 

  22. Zhu, J. and Cui, Y., Nat. Mater., 2010, vol. 9, pp. 183–184.

    Article  CAS  Google Scholar 

  23. Allam, N.K., Poncheri, A.J., and El-Sayed, M.A., ACS Nano, 2011, vol. 5, pp. 5056–5066.

    Article  CAS  Google Scholar 

  24. Chen, H.M., Chen, C.K., Chen, C.-J., Cheng, L.-C., Wu, P.C., Cheng, B.H., Ho, Y.Z., Tseng, M.L, Hsu, Y.-Y., Chan, T.-S., Lee, J.-F., Liu, R.-S., and Tsai, D.P., ACS Nano, 2012, vol. 6, pp. 7362–7372.

    Article  CAS  Google Scholar 

  25. Tsai, C.-H., Fei, P.-H., and Wu, W.-C., Electrochim. Acta, 2015, vol. 165, pp. 356–364.

    Article  CAS  Google Scholar 

  26. Prusi, A.R. and Arsov, L.D., Corros. Sci., 1992, vol. 33, pp. 153–164.

    Article  CAS  Google Scholar 

  27. Diamanti, M.V., Bolzoni, F., Ormellese, M., Pérez-Rosales, E.A., and Pedeferri, M.P., Corros. Eng. Sci. Technol., 2010, vol. 45, pp. 428–434.

    Article  CAS  Google Scholar 

  28. Vetter, K.J., Electrochemical Kinetics: Theoretical and Experimental Aspects, New York: Elsevier, 1967.

    Google Scholar 

  29. Shah, U.H., Rahman, Z., Deen, K.M., Asgar, H., Shabib, I., and Haider, W., J. Appl. Electrochem., 2017, vol. 47, pp. 1147–1159.

    Article  CAS  Google Scholar 

  30. Diao, R., Int. J. Electrochem. Sci., 2018, vol. 13, pp. 7765–7777.

    Article  CAS  Google Scholar 

  31. González, J.E. and Mirza-Rosca, J., J. Electroanal. Chem., 1999, vol. 471, pp. 109–115.

    Article  Google Scholar 

  32. Pan, J., Thierry, D., and Leygraf, C., Electrochim. Acta, 1996, vol. 41, pp. 1143–1153.

    Article  CAS  Google Scholar 

  33. Souto, M.R., Laz, M.M., and Reis, L.R., Biomaterials, 2003, vol. 24, pp. 4213–4221.

    Article  CAS  Google Scholar 

  34. Venugopalan, R., Weimer, J.J., George, M.A., and Lucas, L.C., Biomaterials, 2000, vol. 21, pp. 1669–1677.

    Article  CAS  Google Scholar 

  35. de Assis, S.L., Wolynec, S., and Costa, I., Electrochim. Acta, 2006, vol. 51, pp. 1815–1819.

    Article  CAS  Google Scholar 

  36. Richter, F., Schiller, C.-A., and Wagner, N., Electrochemical Applications, Kronach: Zahner-elektrik, 2002.

  37. Jaeggi, C., Kern, P., Michler, J., Zehnder, T., and Siegenthaleri, H., Surf. Coat. Technol., 2005, vol. 200, pp. 1913–1919.

    Article  CAS  Google Scholar 

  38. Mathis, A., Rocca, E., Veys-Renaux, D., and Tardelli, J., Electrochim. Acta, 2016, vol. 202, pp. 253–261.

    Article  CAS  Google Scholar 

  39. Milošev, I., Žerjav, G., Calderon Moreno, J.M., and Popa, M., Electrochim. Acta, 2013, vol. 99, pp. 176–189.

    Article  CAS  Google Scholar 

  40. Cui, W.F., Jin, L., and Zhou, L., Mater. Sci. Eng., C., 2013, vol. 33, pp. 3775–3779.

    Article  CAS  Google Scholar 

  41. Baran, E. and Yazıcı, B., Appl. Surf. Sci., 2015, vol. 357, pp. 2206–2216.

    Article  CAS  Google Scholar 

  42. Yasuda, K. and Schmuki, P., Electrochim. Acta, 2007, vol. 52, pp. 4053–4061.

    Article  CAS  Google Scholar 

  43. Hlinka, J., Lasek, S., and Faisal, N., Acta Metall. Slovaca, 2017, vol. 23, pp. 270–275.

    Article  Google Scholar 

  44. Zhang, X. and Wu, L., Ionics (Kiel), 2018, vol. 24, pp. 2905–2913.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are greatly thankful to Bingöl University Central Laboratory for SEM and AFM micrographs and Prof. Dr. Ramazan Solmaz and Asist. Prof. Dr. Ece Altunbaş Şahin from Bingöl University.

Funding

This study has been financially supported by the TÜBİTAK (Project no. 118Z658) and the authors are thankful to TÜBİTAK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Döner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzal, H., Döner, A. Corrosion Behavior of Titanium Dioxide Nanotubes in Alkaline Solution. Prot Met Phys Chem Surf 56, 311–319 (2020). https://doi.org/10.1134/S207020512002029X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020512002029X

Keywords:

Navigation