Skip to main content
Log in

Sintering pressure of SPS-inducing lattice deformation enhances ferroelectric and photoluminescence properties of PLZT ceramics

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Lead lanthanum zirconate titanate (PLZT) electro-optic ceramics are used in a wide range of applications in electronic devices. In this work, Pb0.92La0.08(Zr0.52Ti0.48)O3 ceramic compositions with excellent electro-optic properties are successfully prepared by varying the sintering pressure of SPS, and the relationship among pressure-microstructure-properties is analyzed. The Rietveld refinement results show that the variation of lattice parameters due to the sintering pressure of the SPS is the main reason for the difference in properties. XPS and Raman spectroscopy analysis shows that the high sintering pressure inhibits the substitution of La ions for Pb ions, leading to lattice deformation. The experimental results show that the PLZT ceramics prepared by the SPS method at a sintering pressure of 30 MPa show the highest remnant polarization Pr = 70.763 μC/cm2 and the coercive field Ec = 20.034 kV/cm, and the photoluminescence performance exhibits the maximum intensity. The sintering pressure of SPS provides a new idea to enhance the performance of PLZT ceramics by inducing lattice deformation to enhance the performance.

Graphical abstract

Process flow diagram for the preparation of PLZT ceramics by conventional sintering and spark plasma sintering

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The datasets and material generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. G. Zhang, Z. Chen, B. Fan, J. Liu, M. Chen, M. Shen, P. Liu, Y. Zeng, S. Jiang, Q. Wang, APL Mater. 4, 064103 (2016). https://doi.org/10.1063/1.4950844

    Article  CAS  Google Scholar 

  2. C. Galassi, D. Piazza, F. Craciun, P. Verardi, J. Eur. Ceram. Soc. 24, 1525–1528 (2004). https://doi.org/10.1016/S0955-2219(03)00526-0

    Article  CAS  Google Scholar 

  3. A. Kumar, S.R. Emani, V.V. Bhanu Prasad, K.C. James Raju, A.R. James, J. Eur. Ceram. Soc. 36, 2505–2511 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.03.035

    Article  CAS  Google Scholar 

  4. K. Liu, W. Wang, Q. Liu, L. Song, Y.W. Guo, F. Ye, Ceram. Int. 45, 2097–2102 (2019). https://doi.org/10.1016/j.ceramint.2018.10.114

    Article  CAS  Google Scholar 

  5. M.D. Nguyen, J. Eur. Ceram. Soc. 39, 2076–2081 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.02.006

    Article  CAS  Google Scholar 

  6. Y.X. Liu, Z. Li, H.C. Thong, J.T. Lu, J.F. Li, W. Gong, K. Wang, Acta Phys. Sin. 69, 217704 (2020). https://doi.org/10.7498/aps.69.20201079

    Article  CAS  Google Scholar 

  7. A. Gruverman, D. Wu, H.J. Fan, I. Vrejoiu, M. Alexe, R.J. Harrison, J.F. Scott, J. Phys.: Condens. Mater. 20, 342201 (2008). https://doi.org/10.1088/0953-8984/20/34/342201

    Article  CAS  Google Scholar 

  8. A. Schilling, D. Byrne, G. Catalan, K.G. Webber, Y.A. Genenko, G.S. Wu, J.F. Scott, J.M. Gregg, Nano. Lett. 9, 3359–3364 (2009). https://doi.org/10.1021/nl901661a

    Article  CAS  Google Scholar 

  9. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677–688 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02389.x

    Article  CAS  Google Scholar 

  10. P. Moetakef, Z.A. Nemati, Sensor. Actuators A Phys. 141, 463–470 (2008). https://doi.org/10.1016/j.sna.2007.10.005

    Article  CAS  Google Scholar 

  11. H.T. Martirena, J.C. Burfoot, Ferroelectrics 7, 151–152 (1974). https://doi.org/10.1080/00150197408237979

    Article  CAS  Google Scholar 

  12. P.K. Sharma, Z. Ounaies, V.V. Varadan, V.K. Varadan, Samrt Mater. Struct. 10, 878–883 (2001). https://doi.org/10.1088/0964-1726/10/5/304

    Article  CAS  Google Scholar 

  13. Y.J. Wu, J. Li, R. Kimura, N. Uekawa, K. Kakegawa, J. Am. Ceram. Soc. 88, 3327–3331 (2005). https://doi.org/10.1111/j.1551-2916.2005.00601.x

    Article  CAS  Google Scholar 

  14. A. Kumar, A.K. Kalyani, R. Ranjan, K.C. James Raju, J. Ryu, N. Park, A.R. James, J. Alloys. Compd. 816, 152613 (2020). https://doi.org/10.1016/j.jallcom.2019.152613

    Article  CAS  Google Scholar 

  15. F. Clemens, T. Comyn, J. Heiber, F. Nobre, A.C.E. Dent, C.R. Bowen, J. Mater. Sci. 46, 4517–4523 (2011). https://doi.org/10.1007/s10853-011-5345-7

    Article  CAS  Google Scholar 

  16. L. Kozielski, F. Clemens, T. Lusiola, M. Pilch, J. Alloys. Compd. 687, 604–610 (2016). https://doi.org/10.1016/j.jallcom.2016.06.050

    Article  CAS  Google Scholar 

  17. D. Mukherjee, M. Hordagoda, D. Pesquera, D. Ghosh, J.L. Jones, P. Mukherjee, S. Witanachchi, Phys. Rev. B. 95, 174304 (2017). https://doi.org/10.1103/PhysRevB.95.174304

    Article  Google Scholar 

  18. Y.H. Son, K.T. Kim, C.I. Kim, J. Vac. Sci. Technol. A 22, 1743–1745 (2004). https://doi.org/10.1116/1.1752893

    Article  CAS  Google Scholar 

  19. X. Li, Z. Hu, Y. Cho, X. Li, H. Sun, L. Cong, H.J. Lin, S.C. Liao, C.T. Chen, A. Efimenko, C.J. Sahle, Y. Long, C. Jin, M.C. Downer, J.B. Goodenough, J. Zhou, Chem. Mater. 33, 92–101 (2021). https://doi.org/10.1021/acs.chemmater.0c02706

    Article  CAS  Google Scholar 

  20. J. Wang, Z.G. Wu, X.M. Yuan, S.R. Jiang, P.X. Yan, Mater. Chem. Phys. 88, 77–83 (2004). https://doi.org/10.1016/j.matchemphys.2004.06.018

    Article  CAS  Google Scholar 

  21. J.N. Kim, K.S. Shin, D.H. Kim, B.O. Park, N.K. Kim, S.H. Cho, Appl. Surf. Sci. 206, 119–128 (2003). https://doi.org/10.1016/S0169-4332(02)01229-1

    Article  CAS  Google Scholar 

  22. T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, R. Sato, V. Dimitrov, J. Appl. Phys. 91, 2942–2950 (2002). https://doi.org/10.1063/1.1436292

    Article  CAS  Google Scholar 

  23. M.H. Tang, J. Zhang, X.L. Xu, H. Funakubo, Y. Sugiyama, H. Ishiwara, J. Li, J. Appl. Phys. 108, 084101 (2010). https://doi.org/10.1063/1.3499305

    Article  CAS  Google Scholar 

  24. W.L. Chang, J.L. He, J. Electroceram. 13, 47–50 (2004). https://doi.org/10.1007/s10832-004-5074-2

    Article  CAS  Google Scholar 

  25. H.J. Chun, Y. Lee, S. Kim, Y. Yoon, Y. Kim, S.C. Park, Appl. Surf. Sci. 578, 152018 (2022). https://doi.org/10.1016/j.apsusc.2021.152018

    Article  CAS  Google Scholar 

  26. L.X. He, M. Gao, C.E. Li, W.M. Zhu, H.X. Yan, J. Eur. Ceram. Soc. 21, 703–709 (2001). https://doi.org/10.1016/S0955-2219(00)00256-9

    Article  CAS  Google Scholar 

  27. F.J. Yang, X. Cheng, Z.D. Zhou, Y. Zhang, J. Appl. Phys. 106, 114115 (2009). https://doi.org/10.1063/1.3267156

    Article  CAS  Google Scholar 

  28. A. Lurio, G. Burns, J. Appl. Phys. 45, 1986–1992 (1974). https://doi.org/10.1063/1.1663535

    Article  CAS  Google Scholar 

  29. V.V. Efimov, E.A. Efimova, K. Iakoubovskii, S. Khasanov, D.I. Kochubey, V.V. Kriventsov, A. Kuzmin, B.N. Mavrin, M. Sakharov, V. Sikolenko, A.N. Shmakov, S.I. Tiutiunnikov, J. Phys. Chem. Solids. 67, 2007–2012 (2006). https://doi.org/10.1016/j.jpcs.2006.05.034

    Article  CAS  Google Scholar 

  30. M.E. Marssi, R. Farhi, D. Viehland, J. Appl. Phys. 81, 355–360 (1997). https://doi.org/10.1063/1.364119

    Article  CAS  Google Scholar 

  31. E. Buixaderas, M. Berta, L. Kozielski, I. Gregora, Phase Transit. 84, 528–541 (2011). https://doi.org/10.1080/01411594.2011.552049

    Article  CAS  Google Scholar 

  32. S. Samanta, M. Muralidhar, V. Sankaranarayanan, K. Sethupathi, M.S. Ramachandra Rao, M. Murakami, J. Mater. Sci. 52, 13012–13022 (2017). https://doi.org/10.1007/s10853-017-1425-7

    Article  CAS  Google Scholar 

  33. S. Laxmi Priya, V. Kumar, S. Nishio, I. Kanno, Integr. Ferroelectr. 176, 210–219 (2016). https://doi.org/10.1080/10584587.2016.1252648

    Article  CAS  Google Scholar 

  34. S.R. Shannigrahi, S. Tripathy, Ceram. Int. 33, 595–600 (2007). https://doi.org/10.1016/j.ceramint.2005.11.015

    Article  CAS  Google Scholar 

  35. Y. Zhang, M. Xie, J. Roscow, Y. Bao, K. Zhou, D. Zhang, C.R. Bowen, J. Mater. Chem. A 5, 6569–6580 (2017). https://doi.org/10.1039/c7ta00967d

    Article  CAS  Google Scholar 

  36. A. Peláiz-Barranco, Y. González-Abreu, Y. Gagou, P. Saint-Grégoire, J.D.S. Guerra, Vib. Spectrosc. 86, 124–127 (2016). https://doi.org/10.1016/j.vibspec.2016.06.014

    Article  CAS  Google Scholar 

  37. K.K. Bajpai, K. Sreenivas, A.K. Gupta, A.K. Shukla, Ceram. Int. 45, 14111–14120 (2019). https://doi.org/10.1016/j.ceramint.2019.04.111

    Article  CAS  Google Scholar 

  38. M.D. Durruthy-Rodríguez, J.J. Gervacio-Arciniega, M. Hernández-García, J.M. Yáñez-Limón, J. Adv. Ceram. 7, 109–116 (2018). https://doi.org/10.1007/s40145-018-0262-8

    Article  CAS  Google Scholar 

  39. M.S. Silva, M. Cilense, E. Orhan, M.S. Góes, M.A.C. Machado, L.P.S. Santos, C.O. Paiva-Santos, E. Longo, J.A. Varela, M.A. Zaghete, P.S. Pizani, J. Lumin. 111, 205–213 (2005). https://doi.org/10.1016/j.jlumin.2004.08.045

    Article  CAS  Google Scholar 

  40. E. Longo, A.T.D. Figueiredo, M.S. Silva, V.M. Longo, V.R. Mastelaro, N.D. Vieira, M. Cilense, R.W.A. Franco, J.A. Varela, J. Phys. Chem. A 112, 8953–8957 (2008). https://doi.org/10.1021/jp801607m

    Article  CAS  Google Scholar 

  41. B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, G. Shirane, Phys. Rev. B. 61, 8687–8695 (2000). https://doi.org/10.1103/PhysRevB.61.8687

    Article  CAS  Google Scholar 

  42. J. Baedi, M.R. Benam, M. Majidiyan, Phys. Scr. 81, 035701 (2010). https://doi.org/10.1088/0031-8949/81/03/035701

    Article  CAS  Google Scholar 

  43. L.B. Kong, J. Ma, W. Zhu, O.K. Tan, J. Alloys. Compd. 322, 290–297 (2001). https://doi.org/10.1016/S0925-8388(01)01256-7

    Article  CAS  Google Scholar 

  44. B.H. Toby, J. Appl. Cryst. 34, 210–213 (2001). https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11964025, 11564031), the Inner Mongolia Major Basic Research Open Project (Grant No. 0406091701).

Author information

Authors and Affiliations

Authors

Contributions

DZ: Methodology, Investigation, Writing—original draft. YZ: Validation, Formal analysis, Visualization, Writing—review, and editing. HL: Validation, Formal analysis, Resources. NW: Resources, Writing—review and editing, Supervision, Data curation. SOY: Formal analysis, Writing—review, and editing.

Corresponding author

Correspondence to Shunli OuYang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

No human and/or animal studies are involved. The manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2209 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zu, D., Zhang, Y., Li, H. et al. Sintering pressure of SPS-inducing lattice deformation enhances ferroelectric and photoluminescence properties of PLZT ceramics. Journal of Materials Research 38, 2894–2907 (2023). https://doi.org/10.1557/s43578-023-01036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01036-3

Keywords

Navigation