Skip to main content
Log in

Eco-friendly synthesis of zinc oxide nanoparticles using saffron extract and their photocatalytic and antibacterial activities

  • Invited Feature Paper
  • MRS Distinguished Invited Speaker
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The use of nanomaterials for environmental remediation represents an ambitious and innovative solution, which guarantees a fast and efficient removal of pollutants from contaminated sites. The present work reports the ecological synthesis of zinc oxide nanoparticles using saffron (Crocus sativus L) leave waste extract. SEM and XRD were used to evaluate the properties of green-synthesized ZnO nanoparticles. However, the photocatalytic activity of the synthesized ZnO NPs was evaluated for the degradation of Methyl Orange (OM) dye under sunlight in 135 min and the interactions of phenolic compounds present in the Crocus sativus extract with ZnO NPs revealed antibacterial activity against three pathogenic bacteria. The green synthesis of ZnO NPs could be used in pollution control, and it will be a breakthrough in the development of more environmentally friendly, low-cost, energy-efficient, sustainable, and innovative nanostructured materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Figure. 2
Figure. 3
Figure. 4
Figure. 5
Figure. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. R. Kumar, M. Kumar, G. Luthra, Fundamental approaches and applications of nanotechnology: a mini review. Mater. Today: Proceed. (2023). https://doi.org/10.1016/j.matpr.2022.12.172

    Article  Google Scholar 

  2. S. Sikiru, O.J.A. Abiodun, Y.K. Sanusi, Y.A. Sikiru, H. Soleimani, N. Yekeen, A.B.A. Haslija, A comprehensive review on nanotechnology application in wastewater treatment a case study of metal-based using green synthesis. J. Environ. Chem. Eng. 10, 108065 (2022). https://doi.org/10.1016/j.jece.2022.108065

    Article  CAS  Google Scholar 

  3. I. Ali, C. Peng, Z.M. Khan, I. Naz, M. Sultan, M. Ali, I.A. Abbasi, T. Islam, T. Ye, Overview of microbes based fabricated biogenic nanoparticles for water and wastewater treatment. J. Environ. Manage. 230, 128–150 (2019). https://doi.org/10.1016/j.jenvman.2018.09.073

    Article  CAS  Google Scholar 

  4. A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V.K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol. Environ. Saf. 148, 702–712 (2018). https://doi.org/10.1016/j.ecoenv.2017.11.034

    Article  CAS  Google Scholar 

  5. I. Adraoui, M. el Rhazi, A. Amine, Fibrinogen-coated bismuth film electrodes for voltammetric analysis of lead and cadmium using the batch injection analysis. Anal. Lett. 40, 349–368 (2007). https://doi.org/10.1080/00032710600964676

    Article  CAS  Google Scholar 

  6. S. Fakhari, M. Jamzad, H. Kabiri Fard, Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem. Lett. Rev. 12, 19–24 (2019). https://doi.org/10.1080/17518253.2018.1547925

    Article  CAS  Google Scholar 

  7. H. Agarwal, S. Venkat Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Res.-Efficient Technol. 3, 406–413 (2017). https://doi.org/10.1016/j.reffit.2017.03.002

    Article  Google Scholar 

  8. K.K. Brar, S. Magdouli, A. Othmani, J. Ghanei, V. Narisetty, R. Sindhu, P. Binod, A. Pugazhendhi, M.K. Awasthi, A. Pandey, Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. Environ. Res. 207, 112202 (2022)

    Article  CAS  Google Scholar 

  9. A.A. Mohamed, M. Abu-Elghait, N.E. Ahmed, S.S. Salem, Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biol. Trace. Elem. Res. 199, 2788–2799 (2021). https://doi.org/10.1007/s12011-020-02369-4

    Article  CAS  Google Scholar 

  10. S.S. Salem, EL-Belely EF, Niedbała G, Alnoman MM, Hassan SE-D, Eid AM, Shaheen TI, Elkelish A, Fouda A, Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials 10, 2082 (2020). https://doi.org/10.3390/nano10102082

    Article  CAS  Google Scholar 

  11. E.B. Noureddine, S. Nabil, A. Saad, R.M. Younssi, A. Laknifli, A.A. Albizane, Z. Barhon, Photocatalysis-membrane separation coupling reactor: removal of organic pollutants from water. Sci. Study Res. Chem. & Chem. Eng., Biotechnol., Food Ind. 13, 105–108 (2012)

    Google Scholar 

  12. Noureddine EB, Laknifli A, Nabil S, Addich M, Taleb A, Rachid M, Fatni A, Baih M (2020) Study of coupling photocatalysis and membrane separation using tubular ceramic membrane made from natural Moroccan clay and phosphate. E3S Web of Conferences 150. https://doi.org/10.1051/e3sconf/202015001007

  13. P. Singh, N. Kaur, A. Khunger, G. Kaur, S. Kumar, A. Kaushik, G.R. Chaudhary, Green-monodispersed Pd-nanoparticles for improved mitigation of pathogens and environmental pollutant. Mater. Today Commun. 30, 103106 (2022)

    Article  CAS  Google Scholar 

  14. A. García-Quintero, M. Palencia, A critical analysis of environmental sustainability metrics applied to green synthesis of nanomaterials and the assessment of environmental risks associated with the nanotechnology. Sci. Total Environ. 793, 148524 (2021). https://doi.org/10.1016/j.scitotenv.2021.148524

    Article  CAS  Google Scholar 

  15. A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide—from synthesis to application: a review. Materials 7, 2833–2881 (2014). https://doi.org/10.3390/ma7042833

    Article  CAS  Google Scholar 

  16. I. Ngom, B.D. Ngom, J. Sackey, S. Khamlich, Biosynthesis of zinc oxide nanoparticles using extracts of Moringa Oleifera: structural & optical properties. Mater. Today: Proceed. 36, 526–533 (2021)

    CAS  Google Scholar 

  17. M. Naseer, U. Aslam, B. Khalid, B. Chen, Green route to synthesize zinc oxide nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci. Rep. 10, 9055 (2020). https://doi.org/10.1038/s41598-020-65949-3

    Article  CAS  Google Scholar 

  18. Y. Zhang, Overview, in ZnO Nanostructures. (Royal Society of Chemistry, Cambridge, 2017), pp.1–7

    Google Scholar 

  19. M. Khenfouch, M. Baïtoul, M. Maaza, White photoluminescence from a grown ZnO nanorods/graphene hybrid nanostructure. Opt. Mater. 34, 1320–1326 (2012). https://doi.org/10.1016/j.optmat.2012.02.005

    Article  CAS  Google Scholar 

  20. S.S. Salem, A. Fouda, Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol. Trace. Elem. Res. 199, 344–370 (2021). https://doi.org/10.1007/s12011-020-02138-3

    Article  CAS  Google Scholar 

  21. M.C. Moulton, L.K. Braydich-Stolle, M.N. Nadagouda, S. Kunzelman, S.M. Hussain, R.S. Varma, Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale 2, 763–770 (2010). https://doi.org/10.1039/C0NR00046A

    Article  CAS  Google Scholar 

  22. T.U.D. Thi, T.T. Nguyen, Y.D. Thi, K.H.T. Thi, B.T. Phan, K.N. Pham, Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv. 10, 23899–23907 (2020). https://doi.org/10.1039/D0RA04926C

    Article  Google Scholar 

  23. T.S. Aldeen, H.E.A. Mohamed, M. Maaza, ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. J. Phys. Chem. Solids 160, 110313 (2022)

    Article  CAS  Google Scholar 

  24. M. Yadi, E. Mostafavi, B. Saleh, S. Davaran, I. Aliyeva, R. Khalilov, M. Nikzamir, N. Nikzamir, A. Akbarzadeh, Y. Panahi, M. Milani, Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. Artif. Cells, Nanomed. Biotechnol. 46, 336–343 (2018). https://doi.org/10.1080/21691401.2018.1492931

    Article  CAS  Google Scholar 

  25. A.R. Gohari, S. Saeidnia, M.K. Mahmoodabadi, An overview on saffron, phytochemicals, and medicinal properties. Pharmacogn. Rev. 7, 61–66 (2013). https://doi.org/10.4103/0973-7847.112850

    Article  CAS  Google Scholar 

  26. R. Hoshyar, S.Z. Bathaie, A. Kyani, M.F. Mousavi, Is there any interaction between telomeric DNA structures, G-Quadruplex and I-Motif, with saffron active metabolites? Nucleosides, Nucleotides Nucleic Acids 31, 801–812 (2012). https://doi.org/10.1080/15257770.2012.730164

    Article  CAS  Google Scholar 

  27. Z. Abootorabi, M. Poorgholami, M.Y. Hanafi-Bojd, R. Hoshyar, Green synthesis of gold nanoparticles using barberry and saffron extracts. Mod. Care J. (2016). https://doi.org/10.5812/modernc.13000

    Article  Google Scholar 

  28. D. Kothari, R. Thakur, R. Kumar, Saffron (Crocus sativus L.): gold of the spices—a comprehensive review. Hortic. Environ. Biotechnol. 62, 661–677 (2021). https://doi.org/10.1007/s13580-021-00349-8

    Article  Google Scholar 

  29. S.M. Jadouali, H. Atifi, R. Mamouni, K. Majourhat, Z. Bouzoubaâ, A. Laknifli, A. Faouzi, Chemical characterization and antioxidant compounds of flower parts of Moroccan crocus sativus L. J. Saudi Soc. Agric. Sci. 18, 476–480 (2019). https://doi.org/10.1016/j.jssas.2018.03.007

    Article  Google Scholar 

  30. A. Khoulati, S. Ouahhoud, I. Channouf, K. Channouf, A. Azdimousa, S. Mamri, A. Ziani, S. Baddaoui, A. Hadini, A. Asehraou, E. Saalaoui, Crocus sativus L. (saffron): A cocktail of bioactive molecules as a biostimulant by influencing plant growth, the polyphenol and ascorbic acid content of eggplant fruit. Scientific African 19, e01451 (2023). https://doi.org/10.1016/j.sciaf.2022.e01451

    Article  CAS  Google Scholar 

  31. A. Khoulati, S. Ouahhoud, S. Mamri, K. Alaoui, I. Lahmass, M. Choukri, E. Kharmach, A. Asehraou, E. Saalaoui, Saffron extract stimulates growth, improves the antioxidant components of Solanum lycopersicum L., and has an antifungal effect. Ann. Agric. Sci. 64, 138–150 (2019). https://doi.org/10.1016/j.aoas.2019.10.002

    Article  Google Scholar 

  32. A. Hadfi, I. Karmal, B.E. Ibrahimi, S. Ben-aazza, M. Errami, S. Mohareb, A. Driouiche, Valorization of Crocus Sativus L waste extracts as efficient, eco-friendly and economical inhibitors of scaling: Experimental and computational investigations. J. Mol. Liq. 344, 117718 (2021). https://doi.org/10.1016/j.molliq.2021.117718

    Article  CAS  Google Scholar 

  33. S.M. Jadouali, H. Atifi, R. Mamouni, K. Majourhat, Z. Bouzoubaa, S. Gharby, Composition of saffron by-products (Crocus sativus) in relation to utilization as animal feed. Agric. Sci. Dig. 42, 475–481 (2021)

    Google Scholar 

  34. G. Bagherzade, M.M. Tavakoli, M.H. Namaei, Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac. J. Trop. Biomed. 7, 227–233 (2017). https://doi.org/10.1016/j.apjtb.2016.12.014

    Article  Google Scholar 

  35. C.P. Anokwuru, G.N. Anyasor, O. Ajibaye, O. Fakoya, P. Okebugwu, Effect of extraction solvents on phenolic, flavonoid and antioxidant activities of three nigerian medicinal plants. Nat. Sci. 9, 53–61 (2011)

    Google Scholar 

  36. Q. Chen, K.Y. Fung, Y.T. Lau, K.M. Ng, D.T.W. Lau, Relationship between maceration and extraction yield in the production of Chinese herbal medicine. Food Bioprod. Process. 98, 236–243 (2016). https://doi.org/10.1016/j.fbp.2016.02.005

    Article  Google Scholar 

  37. S.M. Jadouali, H. Atifi, Z. Bouzoubaa, K. Majourhat, S. Gharby, F. Achemchem, A. Elmoslih, A. Laknifli, R. Mamouni, Chemical characterization, antioxidant and antibacterial activity of Moroccan Crocus sativus L petals and leaves. Jmes 9, 113–118 (2018)

    Article  CAS  Google Scholar 

  38. R. Shashanka, Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract. J. Iran Chem. Soc. 18, 415–427 (2021). https://doi.org/10.1007/s13738-020-02037-3

    Article  CAS  Google Scholar 

  39. M. Golmohammadi, M. Honarmand, S. Ghanbari, A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes. Spectrochimica Acta Part A: Mol. and Biomol. Spectrosc. 229, 117961 (2020). https://doi.org/10.1016/j.saa.2019.117961

    Article  CAS  Google Scholar 

  40. K. Ali, S. Dwivedi, A. Azam, Q. Saquib, M.S. Al-Said, A.A. Alkhedhairy, J. Musarrat, Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J. Coll. Interface Sci. 472, 145–156 (2016). https://doi.org/10.1016/j.jcis.2016.03.021

    Article  CAS  Google Scholar 

  41. M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Mater. Sci. Semicond. Process. 39, 621–628 (2015). https://doi.org/10.1016/j.mssp.2015.06.005

    Article  CAS  Google Scholar 

  42. P. Rajiv, S. Rajeshwari, R. Venckatesh, Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 112, 384–387 (2013). https://doi.org/10.1016/j.saa.2013.04.072

    Article  CAS  Google Scholar 

  43. T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, A. Varma, Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process. 32, 55–61 (2015). https://doi.org/10.1016/j.mssp.2014.12.053

    Article  CAS  Google Scholar 

  44. F.T. Thema, E. Manikandan, M.S. Dhlamini, M. Maaza, Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater. Lett. 161, 124–127 (2015). https://doi.org/10.1016/j.matlet.2015.08.052

    Article  CAS  Google Scholar 

  45. N. Matinise, X.G. Fuku, K. Kaviyarasu, N. Mayedwa, M. Maaza, ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation. Appl. Surf. Sci. 406, 339–347 (2017). https://doi.org/10.1016/j.apsusc.2017.01.219

    Article  CAS  Google Scholar 

  46. S. Vijayakumar, C. Krishnakumar, P. Arulmozhi, S. Mahadevan, N. Parameswari, Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microb. Pathog. 116, 44–48 (2018). https://doi.org/10.1016/j.micpath.2018.01.003

    Article  CAS  Google Scholar 

  47. K. Rambabu, G. Bharath, F. Banat, P.L. Show, Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J. Hazard. Mater. 402, 123560 (2021). https://doi.org/10.1016/j.jhazmat.2020.123560

    Article  CAS  Google Scholar 

  48. A. Villegas-Fuentes, H.E. Garrafa-Gálvez, R.V. Quevedo-Robles, M. Luque-Morales, A.R. Vilchis-Nestor, P.A. Luque, Synthesis of semiconductor ZnO nanoparticles using Citrus microcarpa extract and the influence of concentration on their optical properties. J. Mol. Struct. 1281, 135067 (2023). https://doi.org/10.1016/j.molstruc.2023.135067

    Article  CAS  Google Scholar 

  49. Y. Zhang, ZnO Nanostructures: Fabrication and Applications (Royal Society of Chemistry, London, 2017)

    Google Scholar 

  50. M. Ebadi, M.R. Zolfaghari, S.S. Aghaei, M. Zargar, M. Shafiei, H.S. Zahiri, K.A. Noghabi, A bio-inspired strategy for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the cell extract of cyanobacterium Nostoc sp. EA03: from biological function to toxicity evaluation. RSC Adv. 9, 23508–23525 (2019). https://doi.org/10.1039/C9RA03962G

    Article  CAS  Google Scholar 

  51. N. Ditlopo, N. Sintwa, S. Khamlich, E. Manikandan, K. Gnanasekaran, M. Henini, A. Gibaud, A. Krief, M. Maaza, From Khoi-San indigenous knowledge to bioengineered CeO2 nanocrystals to exceptional UV-blocking green nanocosmetics. Sci. Rep. 12, 3468 (2022). https://doi.org/10.1038/s41598-022-06828-x

    Article  CAS  Google Scholar 

  52. B.T. Sone, A. Diallo, X.G. Fuku, A. Gurib-Fakim, M. Maaza, Biosynthesized CuO nano-platelets: physical properties & enhanced thermal conductivity nanofluidics. Arab. J. Chem. 13, 160–170 (2020). https://doi.org/10.1016/j.arabjc.2017.03.004

    Article  CAS  Google Scholar 

  53. R. Vinayagam, R. Selvaraj, P. Arivalagan, T. Varadavenkatesan, Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers. J. Photochem. Photobiol. B: Biol. 203, 111760 (2020). https://doi.org/10.1016/j.jphotobiol.2019.111760

    Article  CAS  Google Scholar 

  54. A.A. Alshehri, M.A. Malik, Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation. J. Mater. Sci.: Mater. Electron. 30, 16156–16173 (2019). https://doi.org/10.1007/s10854-019-01985-8

    Article  CAS  Google Scholar 

  55. J. Gangwar, J.K. Sebastian, Unlocking the potential of biosynthesized zinc oxide nanoparticles for degradation of synthetic organic dyes as wastewater pollutants. Water Sci. Technol. 84, 3286–3310 (2021). https://doi.org/10.2166/wst.2021.430

    Article  CAS  Google Scholar 

  56. J. Duraimurugan, G.S. Kumar, P. Maadeswaran, S. Shanavas, P.M. Anbarasan, V. Vasudevan, Structural, optical and photocatlytic properties of zinc oxide nanoparticles obtained by simple plant extract mediated synthesis. J. Mater. Sci.: Mater. Electron. 30, 1927–1935 (2019). https://doi.org/10.1007/s10854-018-0466-2

    Article  CAS  Google Scholar 

  57. P.B.E. Kedi, F.E. Meva, L. Kotsedi, E.L. Nguemfo, C.B. Zangueu, A.A. Ntoumba, H.E.A. Mohamed, A.B. Dongmo, M. Maaza, Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. Int. J. Nanomed. 13, 8537–8548 (2018). https://doi.org/10.2147/IJN.S174530

    Article  CAS  Google Scholar 

  58. M. Bandeira, M. Giovanela, M. Roesch-Ely, D.M. Devine, C.J. da Silva, Green synthesis of zinc oxide nanoparticles: a review of the synthesis methodology and mechanism of formation. Sustain. Chem. Pharm. 15, 100223 (2020). https://doi.org/10.1016/j.scp.2020.100223

    Article  Google Scholar 

  59. S. Owais Mushtaq, R. Sharma, A. Agrawal, A. Sharma, S. Kumar, K. Awasthi, C.S. Yadav, A. Awasthi, Green synthesis of ZnO nanoparticles from saffron corm extract and their bactericidal activity. Mater. Today: Proceed. 69, 74–81 (2022). https://doi.org/10.1016/j.matpr.2022.09.613

    Article  CAS  Google Scholar 

  60. E. Zare, S. Pourseyedi, M. Khatami, E. Darezereshki, Simple biosynthesis of zinc oxide nanoparticles using nature’s source, and it’s in vitro bio-activity. J. Mol. Struct. 1146, 96–103 (2017). https://doi.org/10.1016/j.molstruc.2017.05.118

    Article  CAS  Google Scholar 

  61. D. Havenga, R. Akoba, L. Menzi, S. Azizi, J. Sackey, N. Swanepoel, A. Gibaud, M. Maaza, From Himba indigenous knowledge to engineered Fe2O3 UV-blocking green nanocosmetics. Sci. Rep. 12, 2259 (2022). https://doi.org/10.1038/s41598-021-04663-0

    Article  CAS  Google Scholar 

  62. D. Hassan, A.T. Khalil, J. Saleem, A. Diallo, S. Khamlich, Z.K. Shinwari, M. Maaza, Biosynthesis of pure hematite phase magnetic iron oxide nanoparticles using floral extracts of Callistemon viminalis (bottlebrush): their physical properties and novel biological applications. Artif. Cells, Nanomed. Biotechnol. 46, 693–707 (2018). https://doi.org/10.1080/21691401.2018.1434534

    Article  CAS  Google Scholar 

  63. A.C. Nwanya, L.C. Razanamahandry, A.K.H. Bashir, C.O. Ikpo, S.C. Nwanya, S. Botha, S.K.O. Ntwampe, F.I. Ezema, E.I. Iwuoha, M. Maaza, Industrial textile effluent treatment and antibacterial effectiveness of Zea mays L. Dry husk mediated bio-synthesized copper oxide nanoparticles. J. Hazard. Mater. 375, 281–289 (2019). https://doi.org/10.1016/j.jhazmat.2019.05.004

    Article  CAS  Google Scholar 

  64. V.V. Gawade, N.L. Gavade, H.M. Shinde, S.B. Babar, A.N. Kadam, K.M. Garadkar, Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. J. Mater. Sci.: Mater. Electron. 28, 14033–14039 (2017). https://doi.org/10.1007/s10854-017-7254-2

    Article  CAS  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

IA is the corresponding author, and other authors contributed to the sourcing of relevant literature as well as the synthesis, organization, and drafting of the manuscript.

Corresponding author

Correspondence to Imane Adraoui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adraoui, I., Mamouni, R., Saffaj, N. et al. Eco-friendly synthesis of zinc oxide nanoparticles using saffron extract and their photocatalytic and antibacterial activities. Journal of Materials Research 38, 2874–2884 (2023). https://doi.org/10.1557/s43578-023-01024-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01024-7

Keywords

Navigation