Skip to main content
Log in

Fe–Ni-based electrodes having two redox peaks for 1.4 V symmetrical supercapacitors

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this research, symmetrical and inexpensive flexible electrodes were fabricated from Ethaline deep eutectic solvent (DES) on a graphite substrate. The growth potentials in DES and cycling performance of Fe- and Ni-based films in KOH were investigated. The modified electrodes had two redox peaks separated from each other due to the difference between the electroactive potential of Fe- and Ni-based reactions. Iron- and nickel-based redox reactions occur on the negative and positive sides, respectively. Furthermore, they do not affect each other when they are active in different potentials. Therefore, only one straightforward fabrication step can be applied to obtain electrodes which can be used as both positive and negative electrodes. The maximum areal capacitance of Fe–Ni alloy electrodes reached a maximum value of 79.6 mF cm−2. Charge–discharge curves and self-discharge performances of the films electrodeposited potentiostatically by the application of different deposition voltages were investigated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data are available upon reasonable request.

Code availability

Not applicable.

References

  1. C.A.S. Hall, J.G. Lambert, S.B. Balogh, Energy Policy 64, 141 (2014)

    Article  Google Scholar 

  2. N. Abas, A. Kalair, N. Khan, Futures 69, 31 (2015)

    Article  Google Scholar 

  3. S. Singh, S. Jain, P.S. Venkateswaran, A.K. Tiwari, M.R. Nouni, J.K. Pandey, S. Goel, Renew. Sustain. Energy Rev. 51, 623 (2015)

    Article  CAS  Google Scholar 

  4. R.J. Kuhns and G.H. Shaw, Navigating the Energy Maze: The Transition to a Sustainable Future (Springer, 2018).

  5. E. Kula, Economics of Natural Resources, the Environment and Policies (Springer, 2012).

  6. E. Mcleod, G.L. Chmura, S. Bouillon, R. Salm, M. Björk, C.M. Duarte, C.E. Lovelock, W.H. Schlesinger, B.R. Silliman, Front. Ecol. Environ. 9, 552 (2011)

    Article  Google Scholar 

  7. K.O. Yoro and M.O. Daramola, in Adv. Carbon Capture (Elsevier, 2020), pp. 3–28.

  8. J.-C. Sabonnadiere, Renewable Energy Technologies (Wiley, 2010).

  9. M.S. Dresselhaus, I.L. Thomas, Nature 414, 332 (2001)

    Article  CAS  Google Scholar 

  10. M.M.V. Cantarero, Energy Res. Soc. Sci. 70, 101716 (2020)

    Article  Google Scholar 

  11. F. Asdrubali, G. Baldinelli, F. D’Alessandro, F. Scrucca, Renew. Sustain. Energy Rev. 42, 1113 (2015)

    Article  Google Scholar 

  12. J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z.X. Shen, Adv. Sci. 5, 1700322 (2018)

    Article  Google Scholar 

  13. Y. Zhou, H. Qi, J. Yang, Z. Bo, F. Huang, M.S. Islam, X. Lu, L. Dai, R. Amal, C.H. Wang, Energy Environ. Sci. 14, 1854 (2021)

    Article  CAS  Google Scholar 

  14. S. Najib, E. Erdem, Nanoscale Adv. 1, 2817 (2019)

    Article  Google Scholar 

  15. S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, J.H. Lee, Chem. Eng. J. 403, 126352 (2021)

    Article  CAS  Google Scholar 

  16. M.I.A.A. Maksoud, R.A. Fahim, A.E. Shalan, M. Abd Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, H. Ala’a, A.S. Awed, A.H. Ashour, Environ. Chem. Lett. 19, 375 (2021)

    Article  Google Scholar 

  17. M.G. Carignano, R. Costa-Castelló, V. Roda, N.M. Nigro, S. Junco, D. Feroldi, J. Power Sources 360, 419 (2017)

    Article  CAS  Google Scholar 

  18. E. Pipitone, G. Vitale, J. Power Sources 448, 227368 (2020)

    Article  CAS  Google Scholar 

  19. K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S. Manoharan, D. Kesavan, S. Kim, Adv. Funct. Mater. 31, 2008422 (2021)

    Article  CAS  Google Scholar 

  20. R. Nigam, K.D. Verma, T. Pal, and K.K. Kar, in Handbook of Nanocomposite Supercapacitor Mater. II (Springer, 2020), pp. 463–481

  21. P. Phoosomma, N. Kasayapanand, N. Mungkung, J. Electr. Eng. Technol. 14, 993 (2019)

    Article  Google Scholar 

  22. A. Yavuz, N.F. Yilmaz, M. Artan, J. Electron. Mater. 50, 3478 (2021)

    Article  CAS  Google Scholar 

  23. C. Lekakou, O. Moudam, F. Markoulidis, T. Andrews, J.F. Watts, and G.T. Reed, J. Nanotechnol. 2011, (2011)

  24. R. Dubey, V. Guruviah, Ionics (Kiel). 25, 1419 (2019)

    Article  CAS  Google Scholar 

  25. Y. Mateyshina, A. Ulihin, A. Samarov, C. Barnakov, N. Uvarov, Solid State Ion. 251, 59 (2013)

    Article  CAS  Google Scholar 

  26. J. Lian, R. Cheng, L. Xiong, D. Pang, X. Tian, J. Lei, R. He, X. Yu, T. Duan, W. Zhu, Appl. Surf. Sci. 494, 230 (2019)

    Article  CAS  Google Scholar 

  27. H.Y. Lee, S.W. Kim, H.Y. Lee, Electrochem. Solid State Lett. 4, A19 (2001)

    Article  CAS  Google Scholar 

  28. R. Bolagam, R. Boddula, P. Srinivasan, ChemistrySelect 2, 65 (2017)

    Article  CAS  Google Scholar 

  29. Z.S. Iro, C. Subramani, S.S. Dash, Int. J. Electrochem. Sci. 11, 10628 (2016)

    Article  CAS  Google Scholar 

  30. Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Chem. Soc. Rev. 44, 6684 (2015)

    Article  CAS  Google Scholar 

  31. W. Wei, X. Cui, W. Chen, D.G. Ivey, Chem. Soc. Rev. 40, 1697 (2011)

    Article  CAS  Google Scholar 

  32. Z.-H. Huang, F.-F. Sun, Z.-Y. Yuan, W. Sun, B. Jia, H. Li, H. Li, T. Ma, Nano Energy 82, 105727 (2021)

    Article  CAS  Google Scholar 

  33. M. Zhu, Q. Luo, Q. Chen, W. Wei, Q. Zhang, S. Li, Mater. Chem. Front. 5, 2758 (2021)

    Article  CAS  Google Scholar 

  34. M.S. Yadav, A.K. Sinha, M.N. Singh, and A. Kumar, Mater. Today Proc. (2021)

  35. R. Kumar, S. Sahoo, W.K. Tan, G. Kawamura, A. Matsuda, K.K. Kar, J. Energy Storage 40, 102724 (2021)

    Article  Google Scholar 

  36. M. Ashraf, S.S. Shah, I. Khan, M.A. Aziz, N. Ullah, M. Khan, S.F. Adil, Z. Liaqat, M. Usman, W. Tremel, Chem. Eur. J. 27, 6973 (2021)

    Article  CAS  Google Scholar 

  37. C. Mevada, M. Mukhopadhyay, J. Energy Storage 33, 102058 (2021)

    Article  Google Scholar 

  38. G.P. Sharma, P.K. Gupta, S.K. Sharma, R.G.S. Pala, and S. Sivakumar, ACS Appl. Energy Mater. (2021)

  39. W. Tang, L. Liu, S. Tian, L. Li, Y. Yue, Y. Wu, K. Zhu, Chem. Commun. 47, 10058 (2011)

    Article  CAS  Google Scholar 

  40. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016)

    Article  Google Scholar 

  41. Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Chem. Rev. 118, 9233 (2018)

    Article  CAS  Google Scholar 

  42. M. Sajjad, M.I. Khan, F. Cheng, W. Lu, J. Energy Storage 40, 102729 (2021)

    Article  Google Scholar 

  43. A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, Renew. Sustain. Energy Rev. 101, 123 (2019)

    Article  CAS  Google Scholar 

  44. Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Chem. Soc. Rev. 44, 3639 (2015)

    Article  CAS  Google Scholar 

  45. L. Dong, C. Xu, Y. Li, Z.-H. Huang, F. Kang, Q.-H. Yang, X. Zhao, J. Mater. Chem. A 4, 4659 (2016)

    Article  CAS  Google Scholar 

  46. M. Bučko, D. Culliton, A.J. Betts, J.B. Bajat, Trans. IMF 95, 60 (2017)

    Article  Google Scholar 

  47. C.Q. Cui, J.Y. Lee, Electrochim. Acta 40, 1653 (1995)

    Article  CAS  Google Scholar 

  48. A.P. Abbott, K. El Ttaib, K.S. Ryder, E.L. Smith, Trans. IMF 86, 234 (2008)

    Article  CAS  Google Scholar 

  49. S. Wang, X. Zou, Y. Lu, S. Rao, X. Xie, Z. Pang, X. Lu, Q. Xu, Z. Zhou, Int. J. Hydrogen Energy 1 (2018).

  50. C.S. Santos, R.D. de Oliveira, S. Pitchaimuthu, L.F. Marchesi, C.A. Pessôa, Chem. Pap. 74, 887 (2020)

    Article  CAS  Google Scholar 

  51. H. Li, C.-Y. Guo, C.-L. Xu, Biosens. Bioelectron. 63, 339 (2015)

    Article  CAS  Google Scholar 

  52. C. Barroo, Z.-J. Wang, R. Schlögl, M.-G. Willinger, Nat. Catal. 3, 30 (2020)

    Article  CAS  Google Scholar 

  53. Y. Bi, H. Zhang, H. Wang, S. Duan, Q. Jia, S. Ge, S. Zhang, Ceram. Int. 45, 16180 (2019)

    Article  CAS  Google Scholar 

  54. C. Sha, Z. Zhou, Z. Xie, P. Munroe, Appl. Surf. Sci. 507, 145101 (2020)

    Article  CAS  Google Scholar 

  55. R. Barik, B.K. Jena, M. Mohapatra, RSC Adv. 7, 49083 (2017)

    Article  CAS  Google Scholar 

  56. R. Pai, A. Singh, S. Simotwo, V. Kalra, Adv. Eng. Mater. 20, 1701116 (2018)

    Article  Google Scholar 

  57. H. Du, Y. Pan, X. Zhang, F. Cao, T. Wan, H. Du, R. Joshi, D. Chu, Nanoscale Adv. 1, 140 (2019)

    Article  CAS  Google Scholar 

  58. S. Ci, Z. Wen, Y. Qian, S. Mao, S. Cui, J. Chen, Sci. Rep. 5, 1 (2015)

    Article  Google Scholar 

  59. D.W. Kumsa, N. Bhadra, E.M. Hudak, S.C. Kelley, D.F. Untereker, J.T. Mortimer, J. Neural Eng. 13, 52001 (2016)

    Article  Google Scholar 

  60. K. Chen, C. Sun, D. Xue, Phys. Chem. Chem. Phys. 17, 732 (2015)

    Article  CAS  Google Scholar 

  61. S. Tanwar, N. Singh, A.L. Sharma, J. Energy Storage 45, 103797 (2022)

    Article  Google Scholar 

  62. S. Jha, Y. Chen, B. Zhang, A. Elwany, D. Parkinson, H. Liang, J. Appl. Electrochem. 50, 231 (2020)

    Article  CAS  Google Scholar 

  63. H. Wang, Y. Liang, M. Gong, Y. Li, W. Chang, T. Mefford, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, Nat. Commun. 3, 917 (2012)

    Article  Google Scholar 

  64. A.K. Shukla, M.K. Ravikumar, T.S. Balasubramanian, J. Power Sources 51, 29 (1994)

    Article  CAS  Google Scholar 

  65. N. Taşaltın, Y. Zirek, M. Şan, C. Taşaltın, S. Karakuş, A. Kilislioğlu, Phys. E Low-Dimens. Syst. Nanostruct. 116, 113766 (2020)

    Article  Google Scholar 

  66. J. Xie, P. Yang, Y. Wang, T. Qi, Y. Lei, C.M. Li, J. Power Sources 401, 213 (2018)

    Article  CAS  Google Scholar 

  67. L.L. Zhang, X.S. Zhao, 2520 (2009)

  68. A.R. Harifi-Mood, R. Buchner, J. Mol. Liq. 225, 689 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.A. thanks YOK 100/2000 programme for PhD scholarship. The authors would like to thank Scientific Research Project Unit of Gaziantep University (MF.ALT.19.18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulcabbar Yavuz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavuz, A., Artan, M. & Yilmaz, N.F. Fe–Ni-based electrodes having two redox peaks for 1.4 V symmetrical supercapacitors. Journal of Materials Research 38, 686–695 (2023). https://doi.org/10.1557/s43578-022-00850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00850-5

Keywords

Navigation