Skip to main content

Advertisement

Log in

Fe-Cu Alloy-Based Flexible Electrodes from Ethaline Ionic Liquid

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effective implementation of energy storage systems within flexible structures has recently become of particular interest. Here, the fabrication of inexpensive flexible electrodes via a number of straightforward methods formed the motivation for this research. Thin film-based Fe-Cu alloys were cathodically electrodeposited on a graphite substrate. As ionic liquids consist purely of ions (not solvent), they have recently been used in some electrochemical applications. In this study, therefore, Fe-Cu alloy coatings were prepared from an ethaline ionic liquid containing iron and copper salts. The electrochemical behaviour of Fe-Cu alloy films was determined by scanning between − 1.0 V and − 0.3 V in 1 M KOH at various scan rates ranging from 5 mV s−1 to 200 mV s−1. These films were characterised in terms of their structural and morphological properties by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and x-ray diffraction (XRD). Formation of iron and copper alloy was differentiated depending on applied potential. The supercapacitive ability of Fe-Cu-coated film observed in 1 M KOH electrolyte demonstrated a specific capacitance of 304 F g−1 at a scan rate of 5 mV s-1. The reaction between the alloy and the electrolyte was mainly controlled by a surface-controlled reaction. An asymmetric supercapacitor was constructed with an Fe-Cu-coated graphite negative electrode and a non-woven graphite positive electrode. Four asymmetric supercapacitors were connected in series and used to light up a blue light-emitting diode. This study shows that ethaline ionic liquid is a promising medium for the preparation of alloy-based electrodes in energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Chen, and L. Dai, Mater. Today 16, 272 (2013).

    Article  CAS  Google Scholar 

  2. R. Amirante, E. Cassone, E. Distaso, and P. Tamburrano, Energy Convers. Manag. 132, 372 (2017).

    Article  CAS  Google Scholar 

  3. K. Wang, H. Wu, Y. Meng, and Z. Wei, Small 10, 14 (2014).

    Article  CAS  Google Scholar 

  4. H. Ibrahim, A. Ilinca, and J. Perron, Renew. Sustain. Energy Rev. 12, 1221 (2008).

    Article  CAS  Google Scholar 

  5. K. Zhang, M. Liu, T. Zhang, X. Min, Z. Wang, L. Chai, and Y. Shi, J. Mater. Chem. A 7, 26838 (2019).

    Article  CAS  Google Scholar 

  6. S. Koohi-Fayegh, and M.A. Rosen, J. Energy Storage 27, 101047 (2020).

    Article  Google Scholar 

  7. J. Wang, Y. Xu, J. Zhu, and P. Ren, J. Power Sources 208, 138 (2012).

    Article  CAS  Google Scholar 

  8. P. Simon and Y. Gogotsi, in Nanoscience and Technology: a Collection of Reviews from Nature Journals, ed. by P. Rodgers (World Scientific, London, 2010), pp. 320–329

  9. V.V.N. Obreja, Phys. E Low-Dimens. Syst. Nanostruct. 40, 2596 (2008).

    Article  CAS  Google Scholar 

  10. S. EzhilArasi, R. Ranjithkumar, P. Devendran, M. Krishnakumar, and A. Arivarasan, J. Mater. Sci. Mater. Electron. 31, 7012 (2020).

    Article  CAS  Google Scholar 

  11. A. Muzaffar, M.B. Ahamed, K. Deshmukh, and J. Thirumalai, Renew. Sustain. Energy Rev. 101, 123 (2019).

    Article  CAS  Google Scholar 

  12. Y.H. Kim, S.W. Kim, and S.-H. Lee, J. Power Sources 114, 366 (2003).

    Article  Google Scholar 

  13. G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).

    Article  CAS  Google Scholar 

  14. A. Burke, J. Power Sources 91, 37 (2000).

    Article  CAS  Google Scholar 

  15. J.R. Miller, and P. Simon, Sci. Mag. 321, 651 (2008).

    CAS  Google Scholar 

  16. R. Kötz, and M. Carlen, Electrochim. Acta 45, 2483 (2000).

    Article  Google Scholar 

  17. C.D. Lokhande, D.P. Dubal, and O.-S. Joo, Curr. Appl. Phys. 11, 255 (2011).

    Article  Google Scholar 

  18. S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, and C.N.R. Rao, J. Chem. Sci. 120, 9 (2008).

    Article  CAS  Google Scholar 

  19. R. Ramya, R. Sivasubramanian, and M.V. Sangaranarayanan, Electrochim. Acta 101, 109 (2013).

    Article  CAS  Google Scholar 

  20. X. Lang, A. Hirata, T. Fujita, and M. Chen, Nat. Nanotechnol. 6, 232 (2011).

    Article  CAS  Google Scholar 

  21. J. Yan, Q. Wang, T. Wei, and Z. Fan, Adv. Energy Mater. 4, 1300816 (2014).

    Article  Google Scholar 

  22. K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K.M. Hercule, C. Lin, C. Shi, and Q. Wei, Nat. Commun. 8, 1 (2017).

    Article  Google Scholar 

  23. H. Jiang, T. Zhao, C. Li, and J. Ma, J. Mater. Chem. 21, 3818 (2011).

    Article  CAS  Google Scholar 

  24. A. Yavuz, K. Kaplan, M. Bedir, and J. Dig, Nanomater. Biostruct. 14, 1061 (2019).

    Google Scholar 

  25. J. Liang, B. Tian, S. Li, C. Jiang, and W. Wu, Adv. Energy Mater. 10, 2000022 (2020).

    Article  CAS  Google Scholar 

  26. J. Chen, H. Wang, J. Deng, C. Xu, and Y. Wang, J. Mater. Chem. A 6, 8986 (2018).

    Article  CAS  Google Scholar 

  27. A. Yavuz, K. Kaplan, and M. Bedir, J. Electroanal. Chem. 877, 114635 (2020).

    Article  CAS  Google Scholar 

  28. K. Krishnamoorthy, P. Pazhamalai, and S.J. Kim, Electrochim. Acta 227, 85 (2017).

    Article  CAS  Google Scholar 

  29. A. Esfandiar, M. Qorbani, I. Shown, and B.O. Dogahe, J. Mater. Chem. A 8, 1920 (2020).

    Article  CAS  Google Scholar 

  30. P. Sivakumar, M. Jana, M. Kota, M. Gyu, A. Gedanken, and H. Seok, J. Power Sources 402, 147 (2018).

    Article  CAS  Google Scholar 

  31. A.U. Rahman, I. Ahmad, and A.S. Malik, J. Energy Storage 29, 101365 (2020).

    Article  Google Scholar 

  32. L. Hu, and Y. Cui, Energy Environ. Sci. 5, 6423 (2012).

    Article  Google Scholar 

  33. K. Jost, G. Dion, and Y. Gogotsi, J. Mater. Chem. A 2, 10776 (2014).

    Article  CAS  Google Scholar 

  34. M.F. El-Kady, and R.B. Kaner, Nat. Commun. 4, 1475 (2013).

    Article  Google Scholar 

  35. Y. Shi, X. Wang, J. Luo, and Q. Xie, J. Mater. Sci. Mater. Electron. 30, 3692 (2019).

    Article  CAS  Google Scholar 

  36. J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, L. Li, and A.C.S. Appl, Mater. Interfaces 8, 4724 (2016).

    Article  CAS  Google Scholar 

  37. P. Shabeeba, K.K. Thasneema, M.S. Thayyil, M.P. Pillai, and C.V. Niveditha, Mater. Res. Express 4, 85501 (2017).

    Article  Google Scholar 

  38. P. Bhargava, W. Liu, M. Pope, T. Tsui, and A. Yu, Electrochim. Acta 358, 136846 (2020).

    Article  CAS  Google Scholar 

  39. K. Kopczyński, and G. Lota, Electrochem. Commun. 107, 106538 (2019).

    Article  Google Scholar 

  40. R. Bernasconi, M. Zebarjadi, and L. Magagnin, J. Electroanal. Chem. 758, 163 (2015).

    Article  CAS  Google Scholar 

  41. P. Sebastian, E. Valles, and E. Gómez, Electrochim. Acta 123, 285 (2014).

    Article  CAS  Google Scholar 

  42. A.P. Abbott, K. El Ttaib, G. Frisch, K.J. McKenzie, and K.S. Ryder, Phys. Chem. Chem. Phys. 11, 4269 (2009).

    Article  CAS  Google Scholar 

  43. Y. Xiao, G. Yu, J. Yuan, J. Wang, and Z. Chen, Electrochim. Acta 51, 4218 (2006).

    Article  CAS  Google Scholar 

  44. H. Li, C.-Y. Guo, and C.-L. Xu, Biosens. Bioelectron. 63, 339 (2015).

    Article  CAS  Google Scholar 

  45. A. Khan, A. Rashid, R. Younas, and R. Chong, Int. Nano Lett. 6, 21 (2016).

    Article  CAS  Google Scholar 

  46. E.D. Cabanillas, J. Desimoni, G. Punte, and R.C. Mercader, Mater. Sci. Eng. A 276, 133 (2000).

    Article  Google Scholar 

  47. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, and A. Memic, Int. J. Nanomed. 7, 6003 (2012).

    Article  CAS  Google Scholar 

  48. R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari, and V. Ravikumar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 121, 746 (2014).

    Article  CAS  Google Scholar 

  49. P.M. Kulal, D.P. Dubal, C.D. Lokhande, and V.J. Fulari, J. Alloys Compd. 509, 2567 (2011).

    Article  CAS  Google Scholar 

  50. D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, and C.D. Lokhande, J. Alloys Compd. 492, 26 (2010).

    Article  CAS  Google Scholar 

  51. B. Vidyadharan, I.I. Misnon, J. Ismail, M.M. Yusoff, and R. Jose, J. Alloys Compd. 633, 22 (2015).

    Article  CAS  Google Scholar 

  52. J. Li, W. Lu, Y. Yan, and T.-W. Chou, J. Mater. Chem. A 5, 11271 (2017).

    Article  CAS  Google Scholar 

  53. Z. Huang, A. Chen, F. Mo, G. Liang, X. Li, Q. Yang, Y. Guo, Z. Chen, Q. Li, and B. Dong, Adv. Energy Mater. 10, 2001024 (2020).

    Article  CAS  Google Scholar 

  54. Q. Yang, Z. Huang, X. Li, Z. Liu, H. Li, G. Liang, D. Wang, Q. Huang, S. Zhang, and S. Chen, ACS Nano 13, 8275 (2019).

    Article  CAS  Google Scholar 

  55. V.D. Patake, S.S. Joshi, C.D. Lokhande, and O.-S. Joo, Mater. Chem. Phys. 114, 6 (2009).

    Article  CAS  Google Scholar 

  56. A. Pendashteh, M.F. Mousavi, and M.S. Rahmanifar, Electrochim. Acta 88, 347 (2013).

    Article  CAS  Google Scholar 

  57. S. Shivakumara, T.R. Penki, and N. Munichandraiah, ECS Electrochem. Lett. 2, A60 (2013).

    Article  CAS  Google Scholar 

  58. K. Xie, J. Li, Y. Lai, W. Lu, Z. Zhang, Y. Liu, L. Zhou, and H. Huang, Electrochem. Commun. 13, 657 (2011).

    Article  CAS  Google Scholar 

  59. B. Ameri, S.S.H. Davarani, R. Roshani, H.R. Moazami, and A. Tadjarodi, J. Alloys Compd. 695, 114 (2017).

    Article  CAS  Google Scholar 

  60. D.P. Dubal, G.S. Gund, C.D. Lokhande, and R. Holze, Mater. Res. Bull. 48, 923 (2013).

    Article  CAS  Google Scholar 

  61. S. Shivakumara, T.R. Penki, and N. Munichandraiah, Mater. Lett. 131, 100 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. A. would like to thank YÖK for his PhD scholarship. The authors also thank the Scientific Research Project Unit at Gaziantep University (MF.ALT.19.18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulcabbar Yavuz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavuz, A., Yilmaz, N.F. & Artan, M. Fe-Cu Alloy-Based Flexible Electrodes from Ethaline Ionic Liquid. J. Electron. Mater. 50, 3478–3487 (2021). https://doi.org/10.1007/s11664-021-08853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08853-4

Keywords

Navigation