Skip to main content
Log in

High-temperature stable plasmonic gold gallia nanocomposites for gas sensing

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Real-time monitoring of gases in harsh environments has become a necessity for a wide range of industries including aviation, aerospace and nuclear plants to control process parameters and optimize operating costs. High-temperature stable materials are necessary for these sensing platforms, often operating at temperatures greater than 500 °C. In this work, we report for the first time Au/gallium oxide nanostructures synthesized using a facile approach which after characterization by optical (UV–Visible) and structural (X-ray diffraction, transmission electron microscope) analyses exhibited sensitivity to CO at a temperature of 800 °C. We have also studied the thermal, chemical and morphological stability of the samples, and the results indicate that they can be promising for high-temperature gas sensing. Such nanocomposites prepared using simple solution-based approaches can be a promising cost-effective approach for high-temperature and extreme environment gas sensing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

Code availability

Not applicable.

References

  1. S.O. Oladokun, Climate change control system and technology series (2015)

  2. O.V. Sanderfoot, T. Holloway, Air pollution impacts on avian species via inhalation exposure and associated outcomes. Environ Res Lett (2017). https://doi.org/10.1088/1748-9326/aa8051

    Article  Google Scholar 

  3. J.W. Fergus, Materials for high temperature electrochemical NOx gas sensors. Sens. Actuators B 121, 652–663 (2007). https://doi.org/10.1016/j.snb.2006.04.077

    Article  CAS  Google Scholar 

  4. D. Popa, F. Udrea, Towards integrated mid-infrared gas sensors. Sensors (Switzerland) 19, 1–15 (2019). https://doi.org/10.3390/s19092076

    Article  CAS  Google Scholar 

  5. S. Kunwar, P. Pandey, J. Lee, Enhanced localized surface plasmon resonance of fully alloyed AgAuPdPt, AgAuPt, AuPt, AgPt, and Pt nanocrystals: systematical investigation on the morphological and LSPR properties of mono -, bi-, tri-, and quad-metallic nanoparticles. ACS Omega 4, 17340–17351 (2019). https://doi.org/10.1021/acsomega.9b02066

    Article  CAS  Google Scholar 

  6. P. Carter, J.M.P. Martirez, J.L. Bao, E.A. Carter, First-principles insights into plasmon-induced catalysis. 1–21 (2020)

  7. H. Harutyunyan, F. Suchanek, R. Lemasters, J.J. Foley, Hot-carrier dynamics in catalysis. MRS Bull 45, 32–36 (2020). https://doi.org/10.1557/mrs.2019.291

    Article  CAS  Google Scholar 

  8. Z. Yuan, R. Li, F. Meng et al., Approaches to enhancing gas sensing properties: a review. Sensors (Switzerland) (2019). https://doi.org/10.3390/s19071495

    Article  Google Scholar 

  9. Of TP, Materials C (2011) Fan YANG

  10. G. Mattei, P. Mazzoldi, M.L. Post et al., Cookie-like Au/NiO nanoparticles with optical gas-sensing properties. Adv. Mater. 19, 561–564 (2007). https://doi.org/10.1002/adma.200600930

    Article  CAS  Google Scholar 

  11. P.R. Ohodnicki, M. Andio, C. Wang, Density optical gas sensing responses in transparent conducting oxides with large free carrier density. 024309 (2014). https://doi.org/10.1063/1.4890011

  12. P.R. Ohodnicki, A review and perspective: thin films for optical based chemical sensing at extreme temperatures. 31–34. https://doi.org/10.1109/FIIW.2012.6378339

  13. G. Dharmalingam, N.A. Joy, B. Grisafe, M.A. Carpenter, Plasmonics-based detection of H2 and CO: discrimination between reducing gases facilitated by material control. Beilstein J. Nanotechnol. 3, 712–721 (2012). https://doi.org/10.3762/bjnano.3.81

  14. N. Karker, G. Dharmalingam, M.A. Carpenter, Thermal energy harvesting plasmonic based chemical sensors. (2014). https://doi.org/10.1021/nn504870b

    Article  Google Scholar 

  15. M.G. Manera, J. Spadavecchia, D. Buso, et al., Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films. 132, 107–115 (2008). https://doi.org/10.1016/j.snb.2008.01.014

  16. G.E. Della, M. Guglielmi, G. Perotto et al., Chemical CO optical sensing properties of nanocrystalline ZnO-Au films: effect of doping with transition metal ions. Sens. Actuators B 161, 675–683 (2012). https://doi.org/10.1016/j.snb.2011.11.011

    Article  CAS  Google Scholar 

  17. S. Arulkumar, T. Senthilkumar, S. Parthiban et al., AgNWs-a-TiOx: a scalable wire bar coated core–shell nanocomposite as transparent thin film electrode for flexible electronics applications. J. Mater. Sci. 32, 6454–6464 (2021). https://doi.org/10.1007/s10854-021-05362-2

    Article  CAS  Google Scholar 

  18. S. Arulkumar, S. Parthiban, D. Gnanaprakash, J.Y. Kwon, Solution processed boron doped indium oxide thin-film as channel layer in thin-film transistors. J. Mater. Sci. 30, 18696–18701 (2019). https://doi.org/10.1007/s10854-019-02222-y

    Article  CAS  Google Scholar 

  19. M. Bartic, C.I. Baban, H. Suzuki et al., β-Gallium oxide as oxygen gas sensors at a high temperature. J. Am. Ceram. Soc. 90, 2879–2884 (2007). https://doi.org/10.1111/j.1551-2916.2007.01842.x

    Article  CAS  Google Scholar 

  20. G. Wang, J. Park, X. Kong et al., Facile synthesis and characterization of gallium oxide (β-Ga 2O3) 1D nanostructures: nanowires, nanoribbons, and nanosheets. Cryst. Growth. Des. 8, 1940–1944 (2008). https://doi.org/10.1021/cg701251j

    Article  CAS  Google Scholar 

  21. F.-Z. Su, M. Chen, L.-C. Wang et al., Aerobic oxidation of alcohols catalyzed by gold nanoparticles supported on gallia polymorphs. Catal. Commun. 9(6), 1027–1032 (2008). https://doi.org/10.1016/j.catcom.2007.10.010

    Article  CAS  Google Scholar 

  22. G. Dharmalingam, M.A. Carpenter, Investigation of the optical and sensing characteristics of nanoparticle arrays for high temperature applications. Sens. Extrem. Harsh Environ. II 9491, 949108 (2015). https://doi.org/10.1117/12.2177572

    Article  Google Scholar 

  23. J. Cao, T. Sun, K.T.V. Grattan, Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens. Actuators B (2014). https://doi.org/10.1016/j.snb.2014.01.056

    Article  Google Scholar 

  24. E. Ringe, M. R. Langille, K. Sohn, et al. Plasmon length : a universal parameter to describe size effects in gold nanoparticles. J. Phys. Chem. Lett. 3, 1479–1483 (2012)

  25. P. Property, L. Sun, M. Zhao et al., Gallium oxide nanowire with twinning structure and its. J. Nanosci. Nanotechnol. 20, 2395–2401 (2020). https://doi.org/10.1166/jnn.2020.17365

    Article  CAS  Google Scholar 

  26. S. Kumar, R. Singh, Nanofunctional gallium oxide (Ga2O3) nanowires/nanostructures and their applications in nanodevices. Phys. Status Solidi 7, 781–792 (2013). https://doi.org/10.1002/pssr.201307253

    Article  CAS  Google Scholar 

  27. C. Hsieh, L. Chou, G. Lin et al., Nanophotonic switch: gold-in-Ga O peapod nanowires 8, 3081–3085 (2008). https://doi.org/10.1021/nl0731567

    Article  CAS  Google Scholar 

  28. F. Su, M. Chen, L. Wang et al., Aerobic oxidation of alcohols catalyzed by gold nanoparticles supported on Gallia polymorphs 9, 1027–1032 (2008). https://doi.org/10.1016/j.catcom.2007.10.010

    Article  CAS  Google Scholar 

  29. J.L.M. Rupp, E. Fabbri, D. Marrocchelli et al., Scalable oxygen-ion transport kinetics in metal-oxide films: impact of thermally induced lattice compaction in acceptor doped ceria films. Adv. Funct. Mater. 24, 1562–1574 (2014). https://doi.org/10.1002/adfm.201302117

    Article  CAS  Google Scholar 

  30. G. Dharmalingam, M.A. Carpenter, Chemical sensing dependence on metal oxide thickness for high temperature plasmonics-based sensors. Sens. Actuators B 251, 1104–1111 (2017). https://doi.org/10.1016/j.snb.2017.05.016

    Article  CAS  Google Scholar 

  31. L. Keerthana, M. Ahmad Dar, G. Dharmalingam, Plasmonic Au-metal oxide nanocomposites for high-temperature and harsh environment sensing applications. Chem. Asian J. 16, 3558–3584 (2021). https://doi.org/10.1002/asia.202100885

    Article  CAS  Google Scholar 

  32. K. Lee, M.A. El-sayed, Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size. Shape Metal Compos. (2006). https://doi.org/10.1021/jp062536y

    Article  Google Scholar 

  33. V. Amendola, R. Pilot, M. Frasconi, Surface plasmon resonance in gold nanoparticles: a review. J. Phys. 29(20), 203002 (2017)

  34. F. Shi, H. Qiao, Preparations, properties and applications of gallium oxide nanomaterials—a review. Nano Sel. 3, 348–373 (2022). https://doi.org/10.1002/nano.202100149

    Article  CAS  Google Scholar 

  35. E. Lira, J. Hansen, P. Huo et al., Dissociative and molecular oxygen chemisorption channels on reduced rutile TiO2(110): an STM and TPD study. Surf. Sci. 604, 1945–1960 (2010). https://doi.org/10.1016/j.susc.2010.08.004

    Article  CAS  Google Scholar 

  36. A.V. Almaev, E.V. Chernikov, N.A. Davletkildeev, D.V. Sokolov, Oxygen sensors based on gallium oxide thin films with addition of chromium. Superlattices Microstruct. 139, 106392 (2020). https://doi.org/10.1016/j.spmi.2020.106392

    Article  CAS  Google Scholar 

  37. G. Dharmalingam, M.A. Carpenter, Ac ce p te d cr t. Sens. Actuators B (2017). https://doi.org/10.1016/j.snb.2017.05.016

    Article  Google Scholar 

  38. R. Pavri, G.D. Moore, Gas turbines emissions and control. GE Power Syst. 17, 29–43 (2003)

    Google Scholar 

  39. S. Inasawa, M. Sugiyama, Y. Yamaguchi, Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting. J. Phys. Chem. B 109, 3104–3111 (2005). https://doi.org/10.1021/jp045167j

    Article  CAS  Google Scholar 

  40. K. Narayanan, D. Gnanaprakash, Branched gold nanostructures through a facile fructose mediated microwave route. J. Clust. Sci. 33, 227–240 (2022). https://doi.org/10.1007/s10876-020-01969-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Aeronautics Research & Development Board, Govt of India, Sanction code: DGTM/TM/ARDB/GIA/18-19/0296, (Project No: 2031895).

Funding

This work is supported by the Materials & Manufacturing Panel, Aeronautics Research & Development Board, Govt of India, Sanction code: DGTM/TM/ARDB/GIA/18–19/0296, (Project No: 2031895).

Author information

Authors and Affiliations

Authors

Contributions

LK and GD conceptualized the study. LK collected and interpreted the data and drafted the article. ARI assisted with calculations and measurements. Dr. DG has corrected the manuscript and provided the outline of the paper.

Corresponding author

Correspondence to Gnanaprakash Dharmalingam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keerthana, L., Indhu, A.R. & Dharmalingam, G. High-temperature stable plasmonic gold gallia nanocomposites for gas sensing. Journal of Materials Research 38, 497–506 (2023). https://doi.org/10.1557/s43578-022-00834-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00834-5

Keywords

Navigation