Skip to main content
Log in

GQDs-ε-PL and GQDs-ε-PL-based self-healing hydrogel: Synthesis, characterization and in vitro chemo-photothermal combined antibacterial

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Surface amino-rich GQDs-ε-PL is prepared by changing the addition amount of ε-PL. Then, GQDs-ε-PL@4-arm PEG-BA/QCS hydrogels (GQDs-ε-PL@Gel) are synthesized through dynamic imine bonds cross-linking. The sol can transform quickly to gel and the gelation time can be controlled by adjusting the specific gravity of the input raw materials to water. FT-IR and thermogravimetric analyses indicate the successful synthesis of GQDs-ε-PL and GQDs-ε-PL@Gel. The microstructure observation reveals that GQDs-ε-PL has a sheet-like structure with an average size of 65 nm, while GQDs-ε-PL@Gel has a porous network structure. Both GQDs-ε-PL and GQDs-ε-PL@Gel have good fluorescence stability, photothermal and cytocompatibility, and display better antibacterial effect against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa through chemical and photothermal synergistic sterilization. More importantly, GQDs-ε-PL@Gel can repeatedly self-heal after being damaged, which is more beneficial to provide an effective wound closure environment for wounds and to be used as wound dressings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. T.N. Pham, P. Loupias, A. Dassonville-Klimpt, P. Sonnet, Drug delivery systems designed to overcome antimicrobial resistance. Med. Res. Rev. 39(6), 2343 (2019)

    Article  CAS  Google Scholar 

  2. Y. Cheng, H. Cheng, C. Jiang, X. Qiu, K. Wang, W. Huan, A. Yuan, J. Wu, Y. Hu, Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 6, 8785 (2015)

    Article  CAS  Google Scholar 

  3. J. Sun, L. Song, Y. Fan, L. Tian, S. Luan, S. Niu, L. Ren, W. Ming, J. Zhao, Synergistic photodynamic and photothermal antibacterial nanocomposite membrane triggered by single NIR light source. ACS Appl. Mater. Interfaces 11(30), 26581 (2019)

    Article  CAS  Google Scholar 

  4. X. Cui, S. Xu, X. Wang, C. Chen, The nano-bio interaction and biomedical applications of carbon nanomaterials. Carbon 138, 436 (2018)

    Article  CAS  Google Scholar 

  5. J. Wang, J. Zhang, K. Liu, J. He, Y. Zhang, S. Chen, G. Ma, Y. Cui, L. Wang, D. Gao, Synthesis of gold nanoflowers stabilized with amphiphilic daptomycin for enhanced photothermal antitumor and antibacterial effects. Int. J. Pharm. 580, 119231 (2020)

    Article  CAS  Google Scholar 

  6. F. Peng, F. Zhao, L. Shan, R. Li, S. Jiang, P. Zhang, Black phosphorus nanosheets-based platform for targeted chemo-photothermal synergistic cancer therapy. Colloids Surf. B 198, 111467 (2021)

    Article  CAS  Google Scholar 

  7. X. Xu, X. Liu, L. Tan, Z. Cui, X. Yang, S. Zhu, Z. Li, X. Yuan, Y. Zheng, K.W.K. Yeung, P.K. Chu, S. Wu, Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater. 77, 352 (2018)

    Article  CAS  Google Scholar 

  8. M.C. Wu, A.R. Deokar, J.H. Liao, P.Y. Shih, Y.C. Ling, Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7(2), 1281 (2013)

    Article  CAS  Google Scholar 

  9. M.R. Detty, S.L. Gibson, S.J. Wagner, Current clinical and preclinical photosensitizers for use in photodynamic therapy. J. Med. Chem. 47(16), 3897 (2004)

    Article  CAS  Google Scholar 

  10. Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D.L. Phillips, S. Yang, Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J. Am. Chem. Soc. 136(10), 3760 (2014)

    Article  CAS  Google Scholar 

  11. Z. Zeng, S. Chen, T.T.Y. Tan, F.-X. Xiao, Graphene quantum dots (GQDs) and its derivatives for multifarious photocatalysis and photoelectrocatalysis. Catal. Today 315, 171 (2018)

    Article  CAS  Google Scholar 

  12. Y. Lei, J. Hu, Z. Zhang, Z. Ouyang, Z. Jiang, Y. Lin, Photoelectric properties of SnO2 decorated by graphene quantum dots. Mater. Sci. Semicond. Process. 102, 104582 (2019)

    Article  CAS  Google Scholar 

  13. L. Zhang, L. He, Q. Wang, Q. Tang, F. Liu, Theoretical and experimental studies of a novel electrochemical sensor based on molecularly imprinted polymer and GQDs-PtNPs nanocomposite. Microchem. J. 158, 105196 (2020)

    Article  CAS  Google Scholar 

  14. Y. Pang, R. Zhao, Y. Lu, J. Liu, X. Dong, F. Xi, Facile preparation of N-doped graphene quantum dots as quick-dry fluorescent ink for anti-counterfeiting. New J. Chem. 42(20), 17091 (2018)

    Article  CAS  Google Scholar 

  15. S. Campuzano, P. Yanez-Sedeno, J.M. Pingarron, Carbon dots and graphene quantum dots in electrochemical biosensing. Nanomaterials (Basel) 9(4), 634 (2019)

    Article  CAS  Google Scholar 

  16. S. Chung, R.A. Revia, M. Zhang, Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv Mater. 33(22), e1904362 (2021)

    Article  Google Scholar 

  17. S.F. Seyedpour, A. Rahimpour, A.A. Shamsabadi, M. Soroush, Improved performance and antifouling properties of thin-film composite polyamide membranes modified with nano-sized bactericidal graphene quantum dots for forward osmosis. Chem. Eng. Res. Des. 139, 321 (2018)

    Article  CAS  Google Scholar 

  18. C. Zhao, X. Song, Y. Liu, Y. Fu, L. Ye, N. Wang, F. Wang, L. Li, M. Mohammadniaei, M. Zhang, Q. Zhang, J. Liu, Synthesis of graphene quantum dots and their applications in drug delivery. J. Nanobiotechnol. 18(1), 142 (2020)

    Article  CAS  Google Scholar 

  19. Y. Dong, C.X. Guo, Y. Chi, C.M. Li, Reply to comment on “one-step and high yield simultaneous preparation of single-and multi-layer graphene quantum dots from CX-72 carbon black.” J. Mater. Chem. 22(40), 21777 (2012)

    Article  CAS  Google Scholar 

  20. A.E. Stoica, C. Chircov, A.M. Grumezescu, Hydrogel dressings for the treatment of burn wounds: an up-to-date overview. Materials (Basel) 13(12), 2853 (2020)

    Article  CAS  Google Scholar 

  21. H. Cheng, Z. Shi, K. Yue, X. Huang, Y. Xu, C. Gao, Z. Yao, Y.S. Zhang, J. Wang, Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater. 124, 219 (2021)

    Article  CAS  Google Scholar 

  22. B. Zhang, Y. Lv, C. Yu, W. Zhang, S. Song, Y. Li, Y. Chong, J. Huang, Z. Zhang, Au-Pt nanozyme-based multifunctional hydrogel dressing for diabetic wound healing. Biomater. Adv. 137, 212869 (2022)

    Article  CAS  Google Scholar 

  23. M.T. Khorasani, A. Joorabloo, H. Adeli, P.B. Milan, M. Amoupour, Enhanced antimicrobial and full-thickness wound healing efficiency of hydrogels loaded with heparinized ZnO nanoparticles: in vitro and in vivo evaluation. Int. J. Biol. Macromol. 166, 200 (2021)

    Article  CAS  Google Scholar 

  24. Y. Tu, N. Chen, C. Li, H. Liu, R. Zhu, S. Chen, Q. Xiao, J. Liu, S. Ramakrishna, L. He, Advances in injectable self-healing biomedical hydrogels. Acta Biomater. 90, 1 (2019)

    Article  CAS  Google Scholar 

  25. T. Ma, X. Zhai, Y. Huang, M. Zhang, X. Zhao, Y. Du, C. Yan, A smart nanoplatform with photothermal antibacterial capability and antioxidant activity for chronic wound healing. Adv. Healthc. Mater. 10(13), e2100033 (2021)

    Article  Google Scholar 

  26. D. Zhang, F. Peng, J. Tan, Y. Zhang, F. Wang, J. Xie, R. Xu, H. Du, S. Qian, Y. Qiao, M. Li, X. Liu, Self-assembled ferric oxyhydroxide nanosheet on PEO-coated magnesium alloy with photocatalytic/photothermal antibacterial and enhanced osteogenesis activities. Chem. Eng. J. 437, 135257 (2022)

    Article  CAS  Google Scholar 

  27. R. Ye, H. Xu, C. Wan, S. Peng, L. Wang, H. Xu, Z.P. Aguilar, Y. Xiong, Z. Zeng, H. Wei, Antibacterial activity and mechanism of action of epsilon-poly-L-lysine. Biochem. Biophys. Res. Commun. 439(1), 148 (2013)

    Article  CAS  Google Scholar 

  28. S. Rao, M. Sun, Y. Hu, X. Zheng, Z. Yang, X. Jiao, ε-Polylysine-coated liposomes loaded with a β-CD inclusion complex loaded with carvacrol: Preparation, characterization, and antibacterial activities. LWT 146, 111422 (2021)

    Article  CAS  Google Scholar 

  29. A. Gonsho, K. Irie, H. Susaki, H. Iwasawa, S. Okuno, T. Sugawara, Tissue-targeting ability of saccharide-poly(L-lysine) conjugates. Biol. Pharm. Bull. 17(2), 275 (1994)

    Article  CAS  Google Scholar 

  30. S.S. Wang, P.L. Hsieh, P.S. Chen, Y.T. Chen, J.S. Jan, Genipin-cross-linked poly(L-lysine)-based hydrogels: synthesis, characterization, and drug encapsulation. Colloids Surf. B 111, 423 (2013)

    Article  CAS  Google Scholar 

  31. X. Li, D. Fan, X. Ma, C. Zhu, Y. Luo, B. Liu, L. Chen, A novel injectable pH/temperature sensitive CS-HLC/β-GP hydrogel: the gelation mechanism and its properties. Soft Mater. 12(1), 1 (2014)

    Article  Google Scholar 

  32. Y. Fan, T. Saito, A. Isogai, Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohydr. Polym. 79(4), 1046 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Young and Middle-aged Backbone Personnel Training Project of Fujian Health and Family Planning Commission (2021GGA043) and National Natural Science Foundation of China (81901896).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cui Cheng or Xiao Han.

Ethics declarations

Conflict of interest

No potential conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1533 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Zhang, Y., Feng, W. et al. GQDs-ε-PL and GQDs-ε-PL-based self-healing hydrogel: Synthesis, characterization and in vitro chemo-photothermal combined antibacterial. Journal of Materials Research 38, 368–379 (2023). https://doi.org/10.1557/s43578-022-00816-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00816-7

Navigation