Skip to main content

Advertisement

Log in

Photopolymerized PVA-g-GMA Hydrogels for Biomedical Applications: Factors Affecting Hydrogel Formation and Bioevaluation Tests

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A series of PVA-g-GMA crosslinked hydrogel based on poly(vinyl alcohol) (PVA) functionalized with vinyl groups of glycidyl methacrylate (GMA) has been synthesized. The trans-esterification reaction occurred by introducing methacryloyl groups into PVA chains, while the glycidol was produced as by-product. The water-soluble PVA-g-GMA macromonomers were photocrosslinked using Irgacure 2959 (\(\hbox {I}_{2959})\) as UV photoinitiator at 365 nm. Factors affecting the hydrogel formation, e.g., PVA-g-GMA polymer concentration, \(\hbox {I}_{2959}\) initiator concentration, and irradiation time, were discussed as a function with the swelling degree of formed hydrogels. Also, in vitro bioevaluation tests have been assessed. It was realized that the swelling degree of PVA-g-GMA hydrogels was reduced significantly with increasing the GMA concentration, prolonging the irradiation time and initiator concentration to certain extent. Notably, high GMA content in PVA-g-GMA hydrogels exhibited low protein adsorption, high thermal stability, and very slow hydrolytic degradation, due to the high crosslinking density and tighter structure of the formed hydrogels. However, hydrogels do not show antimicrobial activity against E. coli and klebsiella pneumonia growth even with loaded ampicillin, while unexpected significant resistance was observed against Staphylococcus aureus owing to the loaded ampicillin in hydrogels. Surprisingly, PVA-g-GMA with high GMA contents showed cytotoxic effect against cells using MTT assay, compared to the safe moderated GMA content hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wichterle, O.; Lim, D.: Hydrophilic gels for biological usage. Nature 185, 117 (1960)

    Article  Google Scholar 

  2. Kamoun, E.A.; Kenawy, E.S.; Chen, X.: A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8, 217–233 (2017)

    Article  Google Scholar 

  3. Kamoun, E.A.; Menzel, H.: Crosslinking behavior of dextran modified with hydroxyethyl methacrylate upon irradiation with visible light-effect of concentration, coinitiator type, and solvent. J. Appl. Polym. Sci. 117(6), 3128–3138 (2010)

    Google Scholar 

  4. Kamoun, E.A.; Menzel, H.: HES-HEMA nanocomposite polymer hydrogel: swelling behavior and characterization. J. Polym. Res. 19, 9851–9865 (2012)

    Article  Google Scholar 

  5. Kamoun, E.A.; Chen, X.; Mohy Eldin, M.S.; Kenawy, E.S.: Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab. J. Chem. 8(1), 1–14 (2015)

    Article  Google Scholar 

  6. Kamoun, E.A.; Kenawy, E.S.; Tamer, T.M.; El-Meligy, M.A.; Mohy Eldin, M.S.: Poly(vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arab. J. Chem. 8(1), 38–47 (2015)

    Article  Google Scholar 

  7. Kenawy, E.; Kamoun, E.A.; Mohy Eldin, M.S.; El-Meligy, M.A.: Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arab. J. Chem. 7(3), 372–380 (2014)

    Article  Google Scholar 

  8. Zhao, L.; Mitomo, H.; Zhai, M.; Yoshii, F.; Nagasawa, N.; Kume, T.: Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydr. Polym. 53, 439–446 (2003)

    Article  Google Scholar 

  9. Marin, E.; Rojas, J.; Ciro, Y.: A review of polyvinyl alcohol derivates: promising materials for pharmaceutical and biomedical applications. Afr. J. Pharm. Pharmacol. 8(24), 674–684 (2014)

    Google Scholar 

  10. Kamoun, E.A.; Winkel, A.; Eisenburger, M.; Menzel, H.: Carboxylated camphorquinone as visible-light photoinitiator for biomedical application: synthesis, characterization, and application. Arab. J. Chem. 9(5), 745–754 (2016)

    Article  Google Scholar 

  11. Crispim, E.G.; Piai, J.F.; Fajardo, A.R.: Hydrogels based on chemically modified poly(vinyl alcohol) (PVA–GMA) and PVA–GMA/chondroitin sulfate: preparation and characterization. Express Polym. Lett. 6(5), 383–395 (2012)

    Article  Google Scholar 

  12. Martens, P.; Anseth, K.S.: Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer (Guildf) 41, 7715–7722 (2000)

    Article  Google Scholar 

  13. Zhao, L.; Xiong, Y.; Liu, M.; Qi, X.: Study on superabsorbent of maleic anhydride/acrylamide semi-interpenetrated with poly(vinyl alcohol). Polym. Adv. Technol. 21(7), 483–489 (2010)

    Google Scholar 

  14. Van Dijk-Wolthuis, W.N.E.; Franssen, O.; Talsma, H.; van Steenbergen, M.J.; Kettenes-van den Bosch, J.J.; Hennink, W.E.: Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules 28(18), 6317–6322 (1995)

    Article  Google Scholar 

  15. Lo, C.W.; Jiang, H.: Photo-patterning and degradation study of dextran-glycidyl methacrylate hydrogels. Polym. Eng. Sci. 2010, 232–239 (2010)

    Article  Google Scholar 

  16. Steenbergenj, V.; Bosch, K.; Hennink, W.E.: Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules 28, 6317–6322 (1995)

    Article  Google Scholar 

  17. Sabnis, A.; Rahimi, M.; Chapman, C.; Nguyen, K.T.: Cytocompatibility studies of an in situ photopolymerized thermoresponsive hydrogel nanoparticle system using human aortic smooth muscle cells. J. Biomed. Mater. Res. A. 91(1), 52–59 (2009)

    Article  Google Scholar 

  18. Crispim, E.G.; Piai, J.F.; Schüquel, I.T.A.; Rubira, A.F.; Muniz, E.C.: Functionalization of poly(vinyl alcohol) by addition of methacryloyl groups: characterization by FTIR and NMR and optimization of reaction conditions by RSM. E-Polymers 6(1), 1–18 (2006)

    Article  Google Scholar 

  19. Strober, W.: Appendix 3b Trypan Blue Exclusion Test of Cell Viability, Current Protocols in Immunology. Wiley, London (2001)

    Google Scholar 

  20. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65(1–2), 55–63 (1983)

    Article  Google Scholar 

  21. Liu, Y.; Li, Y.; Yang, L.; Liu, Y.; Bai, L.: Graft copolymerization of methyl acrylate onto sodium alginate initiated by potassium diperiodatocuprate(III). Iran. Polym. J. 14, 457–463 (2005)

    Google Scholar 

  22. Mohy Eldin, M.S.; Kamoun, E.A.; Sofan, M.A.; Elbayomi, S.M.: L-arginine grafted alginate hydrogel beads: a novel ph-sensitive system for specific protein delivery. Arab. J. Chem. 8, 355–365 (2015)

    Article  Google Scholar 

  23. Wang, X.; Hao, T.; Qu, J.; Wang, C.; Chen, H.: Synthesis of thermal polymerizable alginate-GMA hydrogel for cell encapsulation. J. Nanomater. 2015, 1–8 (2015)

    Google Scholar 

  24. Raju, K.M.; Padmanabha, R.M.; Murali, M.Y.: Synthesis and swelling behavior of superabsorbent polymeric materials. Int. J. Polym. Mater. 53(5), 419–429 (2004)

    Article  Google Scholar 

  25. Viljanen, E.K.; Lassila, L.V.J.; Skrifvars, M.; Vallittu, P.K.: Degree of conversion and flexural properties of a dendrimer/methyl methacrylate copolymer: design of experiments and statistical screening. Dent. Mater. 21, 172–177 (2005)

    Article  Google Scholar 

  26. Jonggu, P.; Qiang, Y.; Elizabeth, M.T.; Anil, M.; Sarah, L.K.; Paulette, S.: Effect of photoinitiator system and water content on dynamic mechanical properties of a light-cured bisGMA/HEMA dental resin. J. Biomed. Mater. Res. A 93A(4), 1245–1251 (2009)

    Google Scholar 

  27. Nam, S.Y.; Nho, Y.C.; Hong, S.H.; Chae, G.T.; Jang, H.S.; Suh, T.S.: Evaluation of poly(vinyl alcohol) alginate hydrogels cross-lined by \(\upgamma \)-ray irradiation technique. Macromol. Res. 12(2), 219–224 (2004)

    Article  Google Scholar 

  28. Van Den Bulcke, A.I.; Bogdanov, B.; De Rooze, N.; Schacht, E.H.; Cornelissen, M.; Berghmans, H.: Structure and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1, 31–38 (2000)

    Article  Google Scholar 

  29. Fahmy, A.; Kamoun, E.A.; El-Eisawy, R.; El-Fakharany, E.M.; Taha, T.H.; El-Damhougy, B.K.: Poly(vinyl alcohol)-hyaluronic acid membranes for wound dressing applications: synthesis and in vitro bio-evaluations. J. Braz. Chem. Soc. 26(7), 1357–1366 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elbadawy A. Kamoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamoun, E.A., Omer, A.M., Abu-Serie, M.M. et al. Photopolymerized PVA-g-GMA Hydrogels for Biomedical Applications: Factors Affecting Hydrogel Formation and Bioevaluation Tests. Arab J Sci Eng 43, 3565–3575 (2018). https://doi.org/10.1007/s13369-017-3054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-3054-5

Keywords

Navigation