Skip to main content
Log in

AI-accelerated materials informatics method for the discovery of ductile alloys

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In computational materials science, a common means for predicting macroscopic (e.g., mechanical) properties of an alloy is to define a model using combinations of descriptors that depend on some material properties (elastic constants, misfit volumes, etc.), representative for the macroscopic behavior. The material properties are usually computed using special quasi-random structures, in tandem with density functional theory (DFT). However, DFT scales cubically with the number of atoms and is thus impractical for a screening over many alloy compositions. Here, we present a novel methodology which combines modeling approaches and machine-learning interatomic potentials. Machine-learning interatomic potentials are orders of magnitude faster than DFT, while achieving similar accuracy, allowing for a predictive and tractable high-throughput screening over the whole alloy space. The proposed methodology is illustrated by predicting the room temperature ductility of the medium-entropy alloy Mo–Nb–Ta.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The implementation of the MTPs is included in the MLIP package which is publicly available for academic use at https://mlip.skoltech.ru/download/ upon registration. Additional scripts, necessary to run our algorithm, as well as the training data, are available from the authors upon reasonable request.

Notes

  1. In principle, the model also depends on other orientations, but it was shown in [26] that the {112} stacking fault plane and the {110} surface plane are the most important ones for Mo–Nb–Ta.

  2. Otherwise the active learning algorithm may erroneously undersample certain compositions not considered in the initial training set.

References

  1. E. George, W. Curtin, C. Tasan, High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta Mater. 188, 435–474 (2020)

    Article  CAS  Google Scholar 

  2. E. Ma, Unusual dislocation behavior in high-entropy alloys. Scr. Mater. 181, 127–133 (2020)

    Article  CAS  Google Scholar 

  3. W.A. Curtin, S.I. Rao, C. Woodward, Progress and challenges in the theory and modeling of complex concentrated alloys. MRS Bull. 47(2), 151–157 (2022)

    Article  CAS  Google Scholar 

  4. Yonezawa, Morigaki, K. Coherent potential approximation. Suppl. Prog. Theor. Phys. 53 (1973)

  5. L. Vitos, I.A. Abrikosov, B. Johansson, Anisotropic Lattice Distortions in Random Alloys from First-Principles Theory. Phys. Rev. Lett. 87(15), 156401 (2001)

    Article  CAS  Google Scholar 

  6. Y. Ikeda, B. Grabowski, F. Körmann, Ab initio phase stabilities and mechanical properties of multicomponent alloys: a comprehensive review for high entropy alloys and compositionally complex alloys. Mater. Charact. 147, 464–511 (2019)

    Article  CAS  Google Scholar 

  7. A. Zunger, S.-H. Wei, L.G. Ferreira, J.E. Bernard, Special quasirandom structures. Phys. Rev. Lett. 65(3), 353–356 (1990)

    Article  CAS  Google Scholar 

  8. K. Yang, C. Oses, S. Curtarolo, Modeling off-stoichiometry materials with a high-throughput Ab-Initio approach. Chem. Mater. 28(18), 6484–6492 (2016)

    Article  CAS  Google Scholar 

  9. J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98(14), 146401 (2007)

    Article  Google Scholar 

  10. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104(13), 136403 (2010)

    Article  Google Scholar 

  11. A. Thompson, L. Swiler, C. Trott, S. Foiles, G. Tucker, Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015)

    Article  CAS  Google Scholar 

  12. A.V. Shapeev, Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14(3), 1153–1173 (2016)

    Article  Google Scholar 

  13. J.S. Smith, O. Isayev, A.E. Roitberg, ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8(4), 3192–3203 (2017)

    Article  CAS  Google Scholar 

  14. Schütt, K. T., Kindermans, P.-J., Sauceda, H. E., Chmiela, S., Tkatchenko, A., and Müller, K.-R, SchNet: A Continuous-Filter Convolutional Neural Network for Modeling Quantum Interactions, in Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, pp. 992–1002, Red Hook, NY, USA (Curran Associates Inc. event-place: Long Beach, CA, 2017)

  15. G.P. Pun, R. Batra, R. Ramprasad, Y. Mishin, Physically informed artificial neural networks for atomistic modeling of materials. Nat. Commun. 10(1), 1–10 (2019)

    Article  CAS  Google Scholar 

  16. R. Jinnouchi, F. Karsai, G. Kresse, On-the-fly machine learning force field generation: application to melting points. Phys. Rev. B 100(1), 014105 (2019)

    Article  CAS  Google Scholar 

  17. C.W. Park, M. Kornbluth, J. Vandermause, C. Wolverton, B. Kozinsky, J.P. Mailoa, Accurate and scalable multi-element graph neural network force field and molecular dynamics with direct force architecture. NPJ Comput. Mater. 7(73), 1–9 (2021)

    CAS  Google Scholar 

  18. Y. Lysogorskiy, C. van der Oord, A. Bochkarev, S. Menon, M. Rinaldi, T. Hammerschmidt, M. Mrovec, A. Thompson, G. Csányi, C. Ortner et al., Performant implementation of the atomic cluster expansion (pace) and application to copper and silicon. NPJ Comput. Mater. 7(1), 1–12 (2021)

    Article  Google Scholar 

  19. X.-G. Li, C. Chen, H. Zheng, Y. Zuo, S.P. Ong, Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy. NPJ Comput. Mater. 6(1), 70 (2020)

    Article  CAS  Google Scholar 

  20. J. Byggmästar, K. Nordlund, F. Djurabekova, Modeling refractory high-entropy alloys with efficient machine-learned interatomic potentials: defects and segregation. Phys. Rev. B 104(10), 104101 (2021)

    Article  Google Scholar 

  21. S. Yin, Y. Zuo, A. Abu-Odeh, H. Zheng, X.-G. Li, J. Ding, S.P. Ong, M. Asta, R.O. Ritchie, Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order. Nat. Commun. 12(1), 4873 (2021)

    Article  CAS  Google Scholar 

  22. M. Hodapp, A. Shapeev, Machine-learning potentials enable predictive and tractable high-throughput screening of random alloys. Phys. Rev. Mater. 5(11), 113802 (2021)

    Article  CAS  Google Scholar 

  23. E.V. Podryabinkin, A.V. Shapeev, Active learning of linearly parametrized interatomic potentials. Comput. Mater. Sci. 140, 171–180 (2017)

    Article  CAS  Google Scholar 

  24. K. Gubaev, E.V. Podryabinkin, G.L. Hart, A.V. Shapeev, Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. Comput. Mater. Sci. 156, 148–156 (2019)

    Article  CAS  Google Scholar 

  25. X. Li, W. Li, D.L. Irving, L.K. Varga, L. Vitos, S. Schönecker, Ductile and brittle crack-tip response in equimolar refractory high-entropy alloys. Acta Mater. 189, 174–187 (2020)

    Article  CAS  Google Scholar 

  26. E. Mak, B. Yin, W. Curtin, A ductility criterion for bcc high entropy alloys. J. Mech. Phys. Solids 152, 104389 (2021)

    Article  CAS  Google Scholar 

  27. X.W. Zhou, R.A. Johnson, H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69(14), 144113 (2004)

    Article  Google Scholar 

  28. Y.-J. Hu, A. Sundar, S. Ogata, L. Qi, Screening of generalized stacking fault energies, surface energies and intrinsic ductile potency of refractory multicomponent alloys. Acta Mater. 210, 116800 (2021)

    Article  CAS  Google Scholar 

  29. Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood et al., Performance and cost assessment of machine learning interatomic potentials. J. Phys. Chem. A 124(4), 731–745 (2020)

    Article  CAS  Google Scholar 

  30. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558 (1993)

    Article  CAS  Google Scholar 

  31. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251 (1994)

    Article  CAS  Google Scholar 

  32. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Article  CAS  Google Scholar 

  33. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)

    Article  CAS  Google Scholar 

  34. D. Bolef, Elastic constants of single crystals of the bcc transition elements v, nb, and ta. J. Appl. Phys. 32(1), 100–105 (1961)

    Article  CAS  Google Scholar 

  35. K.J. Carroll, Elastic constants of niobium from 4.2 to 300 k. J. Appl. Phys. 36(11), 3689–3690 (1965)

    Article  CAS  Google Scholar 

  36. F.H. Featherston, J. Neighbours, Elastic constants of tantalum, tungsten, and molybdenum. Phys. Rev. 130(4), 1324 (1963)

    Article  CAS  Google Scholar 

  37. L. Koči, Y. Ma, A. Oganov, P. Souvatzis, R. Ahuja, Elasticity of the superconducting metals v, nb, ta, mo, and w at high pressure. Phys. Rev. B 77(21), 214101 (2008)

    Article  Google Scholar 

  38. C. Varvenne, A. Luque, W.G. Nöhring, W.A. Curtin, Average-atom interatomic potential for random alloys. Phys. Rev. B 93(10), 104201 (2016)

    Article  Google Scholar 

  39. C.D. Statham, D.A. Koss, J.W. Christian, The thermally activated deformation of niobium-molybdenum and niobium-rhenium alloy single crystals. Phil. Mag. 26(5), 1089–1103 (1972)

    Article  CAS  Google Scholar 

  40. K. Gubaev, E.V. Podryabinkin, A.V. Shapeev, Machine learning of molecular properties: locality and active learning. J. Chem. Phys. 148(24), 241727 (2018)

    Article  Google Scholar 

  41. Z. Liu, J. Shang, First principles calculations of electronic properties and mechanical properties of bcc molybdenum and niobium. Rare Met. 30(S1), 354–358 (2011)

    Article  CAS  Google Scholar 

  42. M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. Krishna Ande, S. van der Zwaag, J.J. Plata, C. Toher, S. Curtarolo, G. Ceder, K.A. Persson, M. Asta, Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2(1), 150009 (2015)

    Article  Google Scholar 

  43. X. Gao, F. Tian, H. Song, Tests on the Accuracy and Scalability of the Full-Potential DFT Method Based on Multiple Scattering Theory. Front. Chem. 8, 12 (2020)

    Google Scholar 

  44. M. Liao, Y. Liu, P. Cui, N. Qu, F. Zhou, D. Yang, T. Han, Z. Lai, J. Zhu, Modeling of alloying effect on elastic properties in BCC Nb–Ti–V–Zr solid solution: From unary to quaternary. Comput. Mater. Sci. 172, 109289 (2020)

    Article  CAS  Google Scholar 

  45. C. Varvenne, A. Luque, W.A. Curtin, Theory of strengthening in fcc high entropy alloys. Acta Mater. 118, 164–176 (2016)

    Article  CAS  Google Scholar 

  46. C. Hu, J. Luo, Data-driven prediction of grain boundary segregation and disordering in high-entropy alloys in a 5D space. Mater. Horiz. 9(3), 1023–1035 (2022)

    Article  CAS  Google Scholar 

  47. M. Hodapp, A. Shapeev, In operando active learning of interatomic interaction during large-scale simulations. Mach. Learn.: Sci. Technol. 1(4), 045005 (2020)

    Google Scholar 

  48. J.R. Rice, Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J. Mech. Phys. Solids 40(2), 239–271 (1992)

    Article  CAS  Google Scholar 

  49. T.T.C. Ting, Anisotropic Elasticity: Theory and Applications (Oxford University Press, Oxford, 1996)

    Book  Google Scholar 

  50. C.T. Sun, Z.-H. Jin, Fracture Mechanics (Academic Press, Waltham, MA, 2012)

    Google Scholar 

  51. P. Andric, W.A. Curtin, Atomistic modeling of fracture. Model. Simul. Mater. Sci. Eng. 27(1), 013001 (2019)

    Article  CAS  Google Scholar 

  52. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Structural relaxation made simple. Phys. Rev. Lett. 97(17), 170201 (2006)

    Article  Google Scholar 

  53. A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dułak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jennings, P. Bjerre Jensen, J. Kermode, J.R. Kitchin, E. Leonhard Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. Bergmann Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K.S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, K.W. Jacobsen, The atomic simulation environment-a Python library for working with atoms. J. Phys.: Condens. Matter 29(27), 273002 (2017)

    Google Scholar 

  54. S.A. Goreinov, I.V. Oseledets, D.V. Savostyanov, E.E. Tyrtyshnikov, N.L. Zamarashkin, How to find a good submatrix, in Matrix Methods: Theory, Algorithms And Applications: Dedicated to the Memory of Gene Golub. ed. by V. Olshevsky (World Scientific, Singapore, 2010), pp.247–256

    Chapter  Google Scholar 

  55. R.W. Smith, G.S. Was, Application of molecular dynamics to the study of hydrogen embrittlement in Ni-Cr-Fe alloys. Phys. Rev. B 40(15), 10322–10336 (1989)

    Article  CAS  Google Scholar 

  56. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation (Grant Number 18-13-00479). MH would further like to thank W. A. Curtin and B. Yin for helpful discussions during the initial stage of this project. Moreover, the authors would like to thank P. Andric for providing his scripts for computing the Stroh tensors for the K-factors. The figures in this article showing atomistic configurations were created using the visualization software OVITO [56].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hodapp.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, I., Kovalyova, O., Shapeev, A. et al. AI-accelerated materials informatics method for the discovery of ductile alloys. Journal of Materials Research 37, 3491–3504 (2022). https://doi.org/10.1557/s43578-022-00783-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00783-z

Keywords

Navigation