Skip to main content
Log in

Theoretical study of δ-5 boron monolayer as an anode material for Li- and non-Li-ion batteries

  • Invited Paper
  • FOCUS ISSUE: Structure-Property Relationships in Emerging Two-dimensional Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have studied the electrochemical performance of the δ-5 boron monolayer as an anode material for alkali metal (AM) and alkaline earth metal (AEM) ion batteries using density-functional theory simulations. The electronic properties, adsorption, diffusion rate, and storage behavior of various metal atoms (M) in the δ-5 boron monolayer are explored. Our study shows that the δ-5 boron monolayer possesses high electrical conductivity and a low activation barrier for electron and metal-ion transit (0.493–1.117 eV), indicating a fast charge/discharge rate. Furthermore, the theoretical capacities of the δ-5 boron monolayer for Li, Na, and K are found to be greater than those of commercial graphite. The average open-circuit voltage for AM and AEM is reasonably low and in the range of 0.34–1.30 V. Our results show that δ-5 boron monolayer could be a promising anode material in lithium-ion and non-lithium-ion rechargeable batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. J.P. Barton, D.G. Infield, Energy storage and its use with intermittent renewable energy. IEEE Trans. Energy Conv. 19(2), 441 (2004)

    Article  Google Scholar 

  2. M. Lowe, S. Tokuoka, T. Trigg, G. Gereffi, Lithium-ion batteries for electric vehicles. US Value Chain Contrib. CGGC Res. 90(2), 156–162 (2010)

    Google Scholar 

  3. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252 (2015)

    Article  CAS  Google Scholar 

  4. A. Ponrouch, M.R. Palacín, Post-Li batteries: promises and challenges. Philos. Trans. R. Soc. A 377(2152), 20180297 (2019)

    Article  CAS  Google Scholar 

  5. C. Delmas, Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater. 8(17), 1703137 (2018)

    Article  Google Scholar 

  6. M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947 (2013)

    Article  CAS  Google Scholar 

  7. Y. Wu, Y. Yu, 2D material as anode for sodium ion batteries: Recent progress and perspectives. Energy Storage Mater. 16, 323 (2019)

    Article  Google Scholar 

  8. Y. Liu, B.V. Merinov, W.A. Goddard, Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Nat. Acad. Sci. 113(14), 3735 (2016)

    Article  CAS  Google Scholar 

  9. B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. 29(19), 1700519 (2017)

    Article  Google Scholar 

  10. K. Chayambuka, G. Mulder, D.L. Danilov, P.H. Notten, Sodium-ion battery materials and electrochemical properties reviewed. Adv Energy Mater. 8(16), 1800079 (2018)

    Article  Google Scholar 

  11. E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126(12), 2047 (1979)

    Article  CAS  Google Scholar 

  12. J.K.S. Goodman, P.A. Kohl, Effect of alkali and alkaline earth metal salts on suppression of lithium dendrites. J. Electrochem. Soc. 161(9), D418 (2014)

    Article  CAS  Google Scholar 

  13. L. Shi, T. Zhao, Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. J. Mater. Chem. A 5(8), 3735 (2017)

    Article  CAS  Google Scholar 

  14. L. Wang, Z. Wei, M. Mao, H. Wang, Y. Li, J. Ma, Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Mater. 16, 434 (2019)

    Article  Google Scholar 

  15. M. Gu, Y. He, J. Zheng, C. Wang, Nanoscale silicon as anode for Li-ion batteries: the fundamentals, promises, and challenges. Nano Energy 17, 366 (2015)

    Article  CAS  Google Scholar 

  16. C. Zhang, M. Yu, G. Anderson, R.R. Dharmasena, G. Sumanasekera, The prospects of phosphorene as an anode material for high-performance lithium-ion batteries: a fundamental study. Nanotechnology 28(7), 075401 (2017)

    Article  Google Scholar 

  17. H. Hwang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11(11), 4826 (2011)

    Article  CAS  Google Scholar 

  18. Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, M. Yan, Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 5, 60 (2014)

    Article  CAS  Google Scholar 

  19. Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X= F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909 (2012)

    Article  CAS  Google Scholar 

  20. D. Chen, G. Ji, B. Ding, Y. Ma, B. Qu, W. Chen, J.Y. Lee, Double transition-metal chalcogenide as a high-performance lithium-ion battery anode material. Ind. Eng. Chem. Res. 53(46), 17901 (2014)

    Article  CAS  Google Scholar 

  21. M. Aydinol, A. Kohan, G. Ceder, K. Cho, J. Joannopoulos, Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56(3), 1354 (1997)

    Article  CAS  Google Scholar 

  22. C.M. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative issues of cathode materials for Li-ion batteries. Inorganics. 2(1), 132 (2014)

    Article  CAS  Google Scholar 

  23. X. Liu, X. Zhu, D. Pan, Solutions for the problems of silicon–carbon anode materials for lithium-ion batteries. R. Soc. Open Sci. 5(6), 172370 (2018)

    Article  Google Scholar 

  24. X. Chen, Y. Zhang, The main problems and solutions in practical application of anode materials for sodium ion batteries and the latest research progress. Int. J. Energy Res. 45(7), 9753 (2021)

    Article  CAS  Google Scholar 

  25. L. Kong, K. Wu, L. Chen, Recent progress on borophene: growth and structures. Front. Phys. 13(3), 1 (2018)

    Article  CAS  Google Scholar 

  26. L. Adamska, S. Sadasivam, J.J. Foley IV., P. Darancet, S. Sharifzadeh, First-principles investigation of borophene as a monolayer transparent conductor. J. Phys. Chem. C 122(7), 4037 (2018)

    Article  CAS  Google Scholar 

  27. D. Liu, D. Tománek, Effect of net charge on the relative stability of 2D boron allotropes. Nano Lett. 19(2), 1359 (2019)

    Article  CAS  Google Scholar 

  28. H. Tang, S. Ismail-Beigi, First-principles study of boron sheets and nanotubes. Phys. Rev. B 82(11), 115412 (2010)

    Article  Google Scholar 

  29. X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X.C. Zeng, Two-dimensional boron monolayer sheets. ACS Nano 6(8), 7443 (2012)

    Article  CAS  Google Scholar 

  30. W.-C. Yi, W. Liu, J. Botana, L. Zhao, Z. Liu, J.-Y. Liu, M.-S. Miao, Honeycomb boron allotropes with Dirac cones: a true analogue to graphene. J. Phys. Chem. Lett. 8(12), 2647 (2017)

    Article  CAS  Google Scholar 

  31. S. Zhang, X. Hu, Q. Lu, J. Zhang, Density Functional Theory Study of Arsenic and Selenium Adsorption on the CaO (001). Surf. Energy Fuels. 25(7), 2932 (2011)

    Article  CAS  Google Scholar 

  32. C. Zhu, S. Lin, M. Zhang, Q. Li, Z. Su, Z. Chen, Ultrahigh capacity 2D anode materials for lithium/sodium-ion batteries: an entirely planar B7P2 monolayer with suitable pore size and distribution. J. Mater. Chem. A 8(20), 10301 (2020)

    Article  CAS  Google Scholar 

  33. K.T. Chan, J.B. Neaton, M.L. Cohen, First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 77(23), 235430 (2008)

    Article  Google Scholar 

  34. Z. Yang, Y. Zheng, W. Li, J. Zhang, Tuning the electrochemical performance of Ti3C2 and Hf3C2 monolayer by functional groups for metal-ion battery applications. Nanoscale 13(26), 11534 (2021)

    Article  CAS  Google Scholar 

  35. H. Xu, H. Chen, C. Gao, Advanced graphene materials for sodium/potassium/aluminum-ion batteries. ACS Mater. Lett. 3(8), 1221 (2021)

    Article  CAS  Google Scholar 

  36. Y. Zhang, X. Xia, B. Liu, S. Deng, D. Xie, Q. Liu, Y. Wang, J. Wu, X. Wang, J. Tu, Multiscale graphene-based materials for applications in sodium ion batteries. Adv. Energy Mater. 9(8), 1803342 (2019)

    Article  Google Scholar 

  37. Y. Jing, Z. Zhou, C.R. Cabrera, Z. Chen, Metallic VS2 monolayer: a promising 2D anode material for lithium ion batteries. J. Phys. Chem. C 117(48), 25409 (2013)

    Article  CAS  Google Scholar 

  38. Y. Jing, E.O. Ortiz-Quiles, C.R. Cabrera, Z. Chen, Z. Zhou, Layer-by-layer hybrids of MoS2 and reduced graphene oxide for lithium ion batteries. Electrochim. Acta 147, 392 (2014)

    Article  CAS  Google Scholar 

  39. K. Liu, B. Zhang, X. Chen, Y. Huang, P. Zhang, D. Zhou, Modulating the open-circuit voltage of two-dimensional MoB MBene electrode via specific surface chemistry for Na/K ion batteries: a first-principles study. J. Phys. Chem. C 125(33), 18098 (2021)

    Article  CAS  Google Scholar 

  40. X. Lv, F. Li, J. Gong, J. Gu, S. Lin, Z. Chen, Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study. Phys. Chem. Chem. Phys. 22(16), 8902 (2020)

    Article  CAS  Google Scholar 

  41. R. Yazami, Y.F. Reynier, Mechanism of self-discharge in graphite–lithium anode. Electrochim. Acta 47(8), 1217 (2002)

    Article  CAS  Google Scholar 

  42. K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng, A. Van Der Ven, V. Srinivasan, R. Kostecki, G. Ceder, Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 1(8), 1176 (2010)

    Article  CAS  Google Scholar 

  43. Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Nanoparticulate TiO2 (B): an anode for lithium-ion batteries. Angew. Chem.. 124(9), 2206 (2012)

    Article  Google Scholar 

  44. M. Mortazavi, C. Wang, J. Deng, V.B. Shenoy, N.V. Medhekar, Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J. Power Sources. 268, 279 (2014)

    Article  CAS  Google Scholar 

  45. Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am Chem. Soc. 137(36), 11566 (2015)

    Article  CAS  Google Scholar 

  46. H. Jiang, Z. Lu, M. Wu, F. Ciucci, T. Zhao, Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 23, 97 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AK thanks University Grants Commission (UGC), New Delhi, for financial support in the form of a Junior Research Fellowship (DEC18-512569-ACTIVE). PP thanks DST-SERB for ECRA Project (ECR/2017/003305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Parida.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 533 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Parida, P. Theoretical study of δ-5 boron monolayer as an anode material for Li- and non-Li-ion batteries. Journal of Materials Research 37, 3384–3393 (2022). https://doi.org/10.1557/s43578-022-00734-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00734-8

Keywords

Navigation