Skip to main content

Advertisement

Log in

On the relationships between hardness and the elastic and plastic properties of transversely isotropic power-law hardening materials

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using a combination of dimensional analysis and large deformation finite element simulations of indentations of power-law hardening model materials, a framework for capturing the hardness characteristics of transversely isotropic materials is developed. By considering 4800 combinations of material properties, relationships that predict the hardness of transversely isotropic materials are formulated for both longitudinal and transverse indentations. It is found that hardness tends to be higher for materials with plastic anisotropy than those that exhibit equivalent elastic anisotropy. For perfectly plastic materials, the hardness to the yield stress ratio (R0) can vary from 2.5 to 3.5, while for materials with strain hardening, R0 can be as high as 10. A tighter relationship between the hardness and the Tabor’s representative stress is observed with the ratio of the hardness to the Tabor’s representative stress (Rt) ranging from 2.2 to 4, depending on the elastic and plastic properties and the degree of anisotropy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings are available upon request.

Code availability

N/A.

References

  1. B. Backes, K. Durst, M. Goken, Determination of plastic properties of polycrystalline metallic materials by nanoindentation: Experiments and finite element simulations. Philos. Mag. 86, 5541–5551 (2006)

    Article  CAS  Google Scholar 

  2. Y.W. Bao, W. Wang, Y.C. Zhou, Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements. Acta Mater. 52, 5397–5404 (2004)

    Article  CAS  Google Scholar 

  3. J.L. Bucaille, S. Stauss, E. Felder, J. Michler, Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663–1678 (2003)

    Article  CAS  Google Scholar 

  4. J.L. Bucaille, S. Stauss, P. Schwaller, J. Michler, A new technique to determine the elastoplastic properties of thin metallic films using sharp indenter. Thin Solid Films 447, 239–245 (2004)

    Article  Google Scholar 

  5. K.S. Chen, T.C. Chen, K.S. Ou, Development of semi-empirical formulation for extracting materials properties from nanoindentation measurements: Residual stresses, substrate effect, and creep. Thin Solid Films 516, 1931–1940 (2008)

    Article  CAS  Google Scholar 

  6. W.M. Chen, M. Li, T. Zhang, Y.T. Chen, C.M. Cheng, Influence of indenter tip roundness on hardness behavior in nanoindentation. Mater. Sci. Eng. A Struct. 445, 323–327 (2007)

    Article  Google Scholar 

  7. Y.T. Cheng, C.M. Cheng, Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R. 44, 91–149 (2004)

    Article  Google Scholar 

  8. N. Chollacoop, M. Dao, S. Suresh, Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 3713–3729 (2003)

    Article  CAS  Google Scholar 

  9. M. Tian, T.A. Venkatesh, Indentation of shape memory polymers: Characterization of thermomechanical and shape memory properties. Polymer 54, 1405–1414 (2013)

    Article  CAS  Google Scholar 

  10. G. Cheng, T.A. Venkatesh, Dominant factors influencing the nanoindentation response of piezoelectric materials: A case study in relaxor ferroelectrics. Philos. Mag. Lett. 93, 116–128 (2013)

    Article  CAS  Google Scholar 

  11. A.E. Giannakopoulos, P.L. Larsson, R. Vestergaard, Analysis of Vickers indentation. Int. J. Solids Struct. 31, 2679–2708 (1994)

    Article  Google Scholar 

  12. K. Kese, Z.C. Li, Semi-ellipse method for accounting for the pile-up contact area during nanoindentation with the Berkovich indenter. Scr. Mater. 55, 699–702 (2006)

    Article  CAS  Google Scholar 

  13. H. Lan, T.A. Venkatesh, On the uniqueness and sensitivity issues in determining the elastic and plastic properties of power-law hardening materials through sharp and spherical indentation. Philos. Mag. 87, 4671–4729 (2007)

    Article  CAS  Google Scholar 

  14. H. Lan, T.A. Venkatesh, On the sensitivity characteristics in the determination of the elastic and plastic properties of materials through multiple indentation. J. Mater. Res. 22, 1043–1063 (2007)

    Article  CAS  Google Scholar 

  15. H. Lan, T.A. Venkatesh, Determination of the elastic and plastic properties of materials through instrumented indentation with reduced sensitivity. Acta Mater. 55, 2025–2041 (2007)

    Article  CAS  Google Scholar 

  16. P.L. Larsson, On the mechanical behavior of global parameters in the material characterization by sharp indentation testing. J. Test Eval. 32, 310–321 (2004)

    Article  Google Scholar 

  17. P.L. Larsson, A.E. Giannakopoulos, E. Soderlund, D.J. Rowcliffe, R. Vestergaard, Analysis of Berkovich indentation. Int. J. Solids Struct. 33, 221–248 (1996)

    Article  Google Scholar 

  18. J.H. Lee, H. Lee, D.H. Kim, A numerical approach to evaluation of elastic modulus using conical indenter with finite tip radius. J. Mater. Res. 23, 2528–2537 (2008)

    Article  CAS  Google Scholar 

  19. M. Lichinchi, C. Lenardi, J. Haupt, R. Vitali, Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solids Films. 333, 278–286 (1998)

    CAS  Google Scholar 

  20. Y.Y. Lim, M.M. Chaudhri, The effect of the indenter load on the nanohardness of ductile metals: An experimental study on polycrystalline work-hardened and annealed oxygen-free copper. Philos. Mag. A. 79, 2979–3000 (1999)

    Article  CAS  Google Scholar 

  21. M. Dao, N. Challocoop, K.J. Van Vliet, T.A. Venkatesh, S. Suresh, Computational modeling of forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899–3918 (2001)

    Article  CAS  Google Scholar 

  22. N. Ogasawara, N. Chiba, X. Chen, Measuring the plastic properties of bulk materials by single indentation test. Scr. Mater. 54, 65–70 (2006)

    Article  CAS  Google Scholar 

  23. W.C. Oliver, Alternative technique for analyzing instrumented indentation data. J. Mater. Res. 16, 3202–3206 (2001)

    Article  CAS  Google Scholar 

  24. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  CAS  Google Scholar 

  25. W.C. Oliver, G.M. Pharr, Nanoindentation in materials research: Past, present, and future. MRS Bull. 35, 897–907 (2010)

    Article  CAS  Google Scholar 

  26. G.M. Pharr, A. Bolshakov, Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660–2671 (2002)

    Article  CAS  Google Scholar 

  27. T.A. Venkatesh, K.J. Van Vliet, A.E. Giannakopoulos, S. Suresh, Determination of elasto-plastic properties by instrumented sharp indentation: Guidelines for property extraction. Scr. Mater. 42, 833–839 (2000)

    Article  CAS  Google Scholar 

  28. J.T. Wang, P.D. Hodgson, C.H. Yang, Effects of mechanical properties on the contact profile in Berkovich nanoindentation of elastoplastic materials. J. Mater. Res. 27, 313–319 (2012)

    Article  CAS  Google Scholar 

  29. Z.H. Xu, D. Rowcliffe, Method to determine the plastic properties of bulk materials by nanoindentation. Philos. Mag. A. 82, 1893–1901 (2002)

    Article  CAS  Google Scholar 

  30. H. Lan, T.A. Venkatesh, On the relationships between hardness and the elastic and the plastic properties of isotropic power-law hardening materials. Philos. Mag. A. 93, 35–55 (2014)

    Article  Google Scholar 

  31. X.Z. Xiao, L. Yu, Nano-indentation of ion-irradiated nuclear structural materials: A review. Nuclear Mater. Energy 22, 100721 (2020)

    Article  Google Scholar 

  32. M.M. Chaudhri, Indentation hardness of diamond single crystals, nanopolycrystal, and nanotwinned diamonds: A critical review. Diamond Mater. 109, 108076 (2020)

    Article  CAS  Google Scholar 

  33. M.M. Islam, S.I. Shaki, N.M. Shaheen, P. Bayati, M. Haghshenas, An overview of microscale indentation fatigue: Composites, thin films, coatings, and ceramics. Micron 148, 103110 (2021)

    Article  CAS  Google Scholar 

  34. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, Y.-L. Shen, Indentation across size scales and disciplinesrecent developments in experimentation and modeling. Acta Mater. 55, 4015–4039 (2007)

    Article  CAS  Google Scholar 

  35. T. Rouxel, J.I. Jang, U. Ramamurty, Prog. Mater. Sci. 121, 1 (2021)

    Article  Google Scholar 

  36. A.C. Fischer-Cripps, S.J. Bull, N. Schwarzer, Critical review of claims for ultra-hardness in nanocomposite coatings. Philos. Mag. 92(1601), 1630 (2012)

    Google Scholar 

  37. C.A. Schuh, Nanoindentation studies of materials. Mater. Today 9, 32–40 (2006)

    Article  CAS  Google Scholar 

  38. Q. Wang, F. Long, Z. Wang, N. Guo, M.R. Daymond, Orientation dependent evolution of plasticity of irradiated Zr-25.Nb pressure tube alloy studied by nanoindentation and finite element modeling. J. Nucl. Mater. 512, 371–384 (2018)

    Article  CAS  Google Scholar 

  39. S.M. Kalkhoran, W.B. Choi, A. Gouldstone, Estimation of plastic anisotropy in Ni–5% Al coatings via spherical indentation. Acta Mater. 60, 803–810 (2012)

    Article  CAS  Google Scholar 

  40. G. Cheng, X. Sun, Y. Wang, S.L. Tay, W. Gao, Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties. Surf. Coat. Technol. 310, 43–50 (2017)

    Article  CAS  Google Scholar 

  41. A. Yonezu, K. Yoneda, H. Hirakata, M. Sakihara, K. Minoshima, A simple method to evaluate anisotropic plastic properties based on dimensionless function of single spherical indentation-application to SiC whisker-reinforced aluminum alloy. Mater. Sci. Eng. A 527, 7646–7657 (2010)

    Article  Google Scholar 

  42. Z. Fan, J.Y. Rho, Three-dimensional finite element analysis of the effects of anisotropy on bone mechanical properties measured by nanoindentation. J. Mater. Res. 19, 114–123 (2004)

    Article  CAS  Google Scholar 

  43. Z.J. Cheng, X.M. Wang, J. Ge, J.X. Yan, N. Ji, L.L. Tian, F.Z. Cui, The mechanical anisotropy on a longitudinal section of human enamel studied by nanoindentation. J. Mater. Sci.: Mater. Med. 21, 1811–1816 (2010)

    CAS  Google Scholar 

  44. A. Jäger, Th. Bader, K. Hofstetter, J. Eberhardsteiner, The relation between indentation modulus, microfibril angle, and elastic properties of wood cell walls. Compos. A 42, 677–685 (2011)

    Article  Google Scholar 

  45. T.S. Bhat, T.A. Venkatesh, Indentation of transversely isotropic power-law hardening materials: Computational modelling of the forward and reverse problems. Philos. Mag. A. 93, 4488–4518 (2013)

    Article  CAS  Google Scholar 

  46. ASM Handbook: Properties and Selection Vol. I, II ASM International, Materials Park, OH (1990).

  47. ASM.Matweb.com

  48. J.J. Vlassak, M. Ciavarella, J.R. Barber, X. Wang, The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J. Mech. Phys. Sol. 51, 1701–1721 (2003)

    Article  Google Scholar 

  49. Y.F. Gao, G.M. Pharr, Multidimensional contact moduli of elastically anisotropic solids. Scr. Mater. 57, 13–16 (2007)

    Article  CAS  Google Scholar 

  50. C. Jin, Numerical investigation of indentation tests on a transversely isotropic elastic material by power-law shaped axisymmetric indenters. J. Adhesion. Sci. Tech. 30, 1223–1242 (2016)

    Article  CAS  Google Scholar 

  51. F.M. Borodich, B.A. Galanov, L.M. Keer, M.M. Suarez-Alvarez, The JKR-type adhesive contact problems for transversely isotropic elastic solids. Mech. Mater. 75, 34–44 (2014)

    Article  Google Scholar 

  52. T.L. Li, J.H. Lee, Y.F. Gao, An approximate formulation of the effective indentation modulus of elastically anisotropic film-on-substrate systems. Int. J. Appl. Mech. 1, 515–525 (2009)

    Article  Google Scholar 

  53. M. Wang, J. Wu, X. Zhan, R. Guo, Y. Hui, H. Fan, On the determination of the anisotropic plasticity of metal materials by using instrumented indentation. Mater. Des. 111, 98–107 (2016)

    Article  CAS  Google Scholar 

  54. J. Wu, M. Wang, Y. Hui, Z. Zhang, H. Fan, Identification of anisotropic plasticity properties of materials using spherical indentation imprint mapping. Mater. Sci. Eng. A 723, 269–278 (2018)

    Article  CAS  Google Scholar 

  55. T. Nakamura, Y. Gu, Identification of elastic-plastic anisotropic parameters using instrumented indentation and inverse analysis. Mech. Mater. 39, 340–356 (2007)

    Article  Google Scholar 

  56. A. Yonezu, M. Tanaka, R. Kusano, X. Chen, Probing out-of-plane anisotropic plasticity using spherical indentation: A numerical approach. Comput. Mater. Sci. 79, 336–344 (2013)

    Article  Google Scholar 

  57. D. Tabor, An improved equation relating hardness to ultimate strength. J. I Met. 79, 1–18 (1951)

    CAS  Google Scholar 

Download references

Funding

The present study was supported in part by a National Science Foundation Grant DMR-2004944.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Venkatesh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 234 KB)

Appendix A

Appendix A

As described in “Computational modeling” section, the entire material property database was divided into six domains. For each of the material domains, dimensionless functions that capture the relationships between true projected contact area (Am), the indentation hardness (Hm) and the five elastic and plastic properties of transversely isotropic materials (E0, σ0, EL/ET, σL/σT, n) are identified. Here, of the 24 equations, a list of 6 dimensionless functions for longitudinal indentation hardness is provided. The equations are listed as Пjkl. Here, j varies from 1 to 2 and signifies the indenter orientation—1 for longitudinal, and 2 for parallel indentation; k varies from 4 to 5, and conveys the type of dimensionless function—4 for Am and 5 for Hm; and l represents the part number and varies from 1 to 6. X, Y, and Z represent the properties E0, EL/ET, and σL/σT, respectively.

$$\Pi_{151} = \frac{H}{{\sigma_{0} }} = \left( \begin{gathered} {{n}}^{{2}} {(17}{{.92 - 3}}{{.7y}}^{{2}} + {0}{{.2yz - 2}}{{.1 z}}^{{2}} {)(241}{{.1 - 92}}{{.88Log[x]}} + {9}{{.01Log[x]}}^{{2}} {)} + \hfill \\ {{n( - 0}}{.13 - 0}{{.66y}}^{{2}} + {6}{{.18yz - 0}}{{.07z}}^{{2}} {)( - 35}{{.98}} + {13}{{.65Log[x] - 1}}{{.26Log[x]}}^{{2}} {)} + \hfill \\ { (2}{{.6 - 0}}{{.13y}}^{{2}} + {0}{{.17yz}} + {0}{{.17z}}^{{2}} {)(16 - 5}{{.68Log[x]}} + {0}{{.54Log[x]}}^{{2}} {)} + \hfill \\ \end{gathered} \right)$$
(A.1)
$$\Pi_{152} = \frac{H}{{\sigma_{0} }} = \left( \begin{gathered} {{n}}^{{2}} {(39}{{.6}} + {{13y}}^{{2}} {{ - 34yz}} + {17}{{.85z}}^{{2}} {)(255}{{.37 - 95}}{{.3Log[x]}} + {8}{{.9Log[x]}}^{{2}} {)} + \hfill \\ {{n( - 9}} + {4}{{.27y}}^{{2}} { - 9}{{.79yz}} + {3}{{.47z}}^{{2}} {)(263}{{.75 - 98Log[x]}} + {9}{{.1Log[x]}}^{{2}} {)} + \hfill \\ {(3}{{.6 - 0}}{{.09y}}^{{2}} + {0}{{.13yz}} + {0}{{.24z}}^{{2}} {)(11}{{.9 - 4}}{{.17Log[x]}} + {0}{{.4Log[x]}}^{{2}} {)} \hfill \\ \end{gathered} \right)$$
(A.2)
$$\Pi_{153} = \frac{H}{{\sigma_{0} }} = \left( \begin{gathered} {{n}}^{{2}} {(21}{{.5}} + {16}{{.3y}}^{{}} { - 41}{{.7yz}} + {19}{{.15z}}^{{2}} {)( - 334}{{.5}} + {127}{{.6Log[x] - 12}}{{.13Log[x]}}^{{2}} {)} \hfill \\ + {{n(1}}{.2 - 7}{{.6y}}^{{2}} + {19}{{.1yz - 7}}{{.27z}}^{{2}} {)(65}{{.3 - 25}}{{.3Log[x]}} + {2}{{.5Log[x]}}^{{2}} {)} + \hfill \\ {(1}{{.85}} + {0}{{.02y}}^{{2}} { - 0}{{.11yz}} + {0}{{.23z}}^{{2}} {)(12}{{.8 - 4}}{{.5 Log[x]}} + {0}{{.45Log[x]}}^{{2}} {)} \hfill \\ \end{gathered} \right)$$
(A.3)
$$\Pi_{154} = \frac{H}{{\sigma_{0} }} = \left( \begin{gathered} {{n}}^{{2}} { (20}{{.4}} + {5}{{.46y}}^{{2}} { - 18}{{.28yz}} + {6}{{.34z}}^{{2}} {)( - 229}{{.7}} + {87}{{.4Log[x] - 8}}{{.25Log[x]}}^{{2}} {)} \hfill \\ + {{n(1}}{.9 - 4}{{.97y}}^{{2}} + {14}{{.46yz - 3}}{{.97z}}^{{2}} {)( - 107}{{.4}} + {40}{{.9Log[x] - 3}}{{.9Log[x]}}^{{2}} {)} + \hfill \\ {(5}{{.4 - 0}}{{.12y}}^{{2}} + {0}{{.14yz}} + {0}{{.36z}}^{{2}} {)(12}{{.42 - 4}}{{.6Log[x]}} + {0}{{.45Log[x]}}^{{2}} {)} \hfill \\ \end{gathered} \right)$$
(A.4)
$$\Pi_{155} = \frac{H}{{\sigma_{0} }} = \left( \begin{gathered} {{n}}^{{2}} {(494}{{.4 - 37y}}^{{2}} + {90}{{.58yz - 13}}{{.6z}}^{{2}} {)( - 40}{{.54}} + {15}{{.9Log[x] - 1}}{{.56Log[x]}}^{{2}} {)} \hfill \\ + {{n(117}}{.7 - 9}{{.45y}}^{{2}} + {24}{{.6yz}} + {9}{{.04z}}^{{2}} {)(42}{{.1 - 16}}{{.54Log[x]}} + {1}{{.63Log[x]}}^{{2}} {)} + \hfill \\ {(5 - 0}{{.52y}}^{{2}} + {0}{{.94yz}} + {0}{{.28z}}^{{2}} {)(19}{{.1 - 7}}{{.42Log[x]}} + {0}{{.74Log[x]}}^{{2}} {)} \hfill \\ \end{gathered} \right)$$
(A.5)
$$\Pi_{156} = \frac{H}{{\sigma_{0} }} = \left( \begin{gathered} {{n}}^{{2}} {(208}{{.26 - 11}}{{.76y}}^{{2}} + {20}{{.3yz}} + {2}{{.9z}}^{{2}} {)( - 143}{{.3}} + {56}{{.35Log[x] - 5}}{{.5Log[x]}}^{2} {)} \hfill \\ + {{n(172}}{.35 - 11}{{.64y}}^{{2}} + {19}{{.7yz}} + {4}{{.7z}}^{{2}} {)(40}{{.5 - 15}}{{.9Log[x]}} + {1}{{.56Log[x]}}^{{2}} {)} + \hfill \\ {(11 - 0}{{.72y}}^{{2}} + {1}{{.28yz}} + {0}{{.5z}}^{{2}} {)(20}{{.4 - 8Log[x]}} + {0}{{.8Log[x]}}^{{2}} {)} \hfill \\ \end{gathered} \right)$$
(A.6)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, T.S., Venkatesh, T.A. On the relationships between hardness and the elastic and plastic properties of transversely isotropic power-law hardening materials. Journal of Materials Research 37, 3599–3616 (2022). https://doi.org/10.1557/s43578-022-00730-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00730-y

Navigation