Skip to main content
Log in

Development and analysis of rGO-MoS2 nanocomposite as top electrode for the application of inverted planar perovskite solar cells via SCAPS-1D device simulation

  • Invited Paper
  • FOCUS ISSUE: Structure-Property Relationships in Emerging Two-dimensional Material
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Due to the poor interface contact between perovskite and the noble metal electrode of perovskite solar cells (PSCs), the stability issues are undoubtedly critical. The main objective of this work is to analyze the workability of rGO-MoS2 nanocomposite as the top electrode. The rGO-MoS2 nanocomposite has been prepared experimentally via the refluxing method. The nanocomposite formation is confirmed via X-ray diffraction and Raman spectroscopy as the peaks of both materials found in the nanocomposites indicate a successive composite of the rGO-MoS2. The electrical properties of the sample are examined via a four-point probe. The lowest sheet resistance (10.7 Ω/sq) was obtained for the ratio rGO-MoS2 (5:5). The optical bandgap of the nanocomposite measured via UV–Vis spectroscopy also shows the narrowest bandgap (1.25 eV), which is ideal for photocatalytic application. The power conversion efficiency (PCE) of the solar cells shows remarkable results of 19.68%, confirming the compatibility of rGO-MoS2 electrode.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C. Zhou, H. Lin, S. Lee, M. Chaaban, B. Ma, Organic–inorganic metal halide hybrids beyond perovskites. Mater Res Lett (2018). https://doi.org/10.1080/21663831.2018.1500951

    Article  Google Scholar 

  2. D. Vikraman et al., Design of WSe2/MoS2 heterostructures as the counter electrode to replace Pt for dye-sensitized solar cell. ACS Sustain. Chem. Eng. 7(15), 13195–13205 (2019). https://doi.org/10.1021/acssuschemeng.9b02430

    Article  CAS  Google Scholar 

  3. L. Fagiolari, F. Bella, Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ. Sci. 12(12), 3437–3472 (2019). https://doi.org/10.1039/c9ee02115a

    Article  CAS  Google Scholar 

  4. Y. Gao et al., Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11(12), 1151–1157 (2019). https://doi.org/10.1038/s41557-019-0354-2

    Article  CAS  Google Scholar 

  5. M.K. Rao, D.N. Sangeetha, M. Selvakumar, Y.N. Sudhakar, M.G. Mahesha, Review on persistent challenges of perovskite solar cells’ stability. Sol. Energy 218(February), 469–491 (2021). https://doi.org/10.1016/j.solener.2021.03.005

    Article  CAS  Google Scholar 

  6. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  Google Scholar 

  7. L. Liang, Y. Cai, X. Li, M.K. Nazeeruddin, P. Gao, All that glitters is not gold: Recent progress of alternative counter electrodes for perovskite solar cells. Nano Energy 52(May), 211–238 (2018). https://doi.org/10.1016/j.nanoen.2018.07.049

    Article  CAS  Google Scholar 

  8. L. Wang, G. Li, Q. Zhao, X. Gao, Non-precious transition metals as counter electrode of perovskite solar cells. Energy Storage Mater. (2016). https://doi.org/10.1016/j.ensm.2016.11.007

    Article  Google Scholar 

  9. N.E. Safie, M.A. Azam, M.F.A. Aziz, M. Ismail, Recent progress of graphene-based materials for efficient charge transfer and device performance stability in perovskite solar cells. Int. J. Energy Res. (2020). https://doi.org/10.1002/er.5876

    Article  Google Scholar 

  10. R.N.A.R. Seman, M.A. Azam, M.H. Anib, Graphene/transition metal dichalcogenides hybrid supercapacitor electrode: Status, challenges, and perspectives. Nanotechnology 29(50), 502001 (2018). https://doi.org/10.1088/1361-6528/aae3da

    Article  CAS  Google Scholar 

  11. M.A. Azam, N.E. Safie, M. Fareezuan, A. Aziz, R. Noor, A. Raja, Structural characterization and electrochemical performance of nitrogen doped graphene supercapacitor electrode fabricated by hydrothermal method. Int. J. Nanoelectron. Mater. 14(2), 127–136 (2021)

    Google Scholar 

  12. M.A. Azam, E. Talib, R.N.A.R. Seman, Direct deposition of multi-walled carbon nanotubes onto stainless steel and YEF foils using a simple electrophoretic deposition for electrochemical capacitor electrode. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/aae293

    Article  Google Scholar 

  13. D. Bogachuk et al., Low-temperature carbon-based electrodes in perovskite solar cells. Energy Environ. Sci. 13, 3880–3916 (2020). https://doi.org/10.1039/D0EE02175J

    Article  CAS  Google Scholar 

  14. M. González Laura, R. Daniel, J. Franklin, Current status and trends of carbon-based electrodes for fully solution-processed perovskite solar cells. J. Energy Chem. (2021). https://doi.org/10.1016/j.jechem.2021.11.020

    Article  Google Scholar 

  15. C. Yi, L. Lusheng, G. Peng, Promise of commercialization: Carbon materials for low-cost perovskite solar cells. Chin. Phys. B (2017). https://doi.org/10.1088/1674-1056/27/1/018805/meta

    Article  Google Scholar 

  16. Z. Ku, Y. Rong, M. Xu, T. Liu, H. Han, Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3(February), 2013 (2015). https://doi.org/10.1038/srep03132

    Article  Google Scholar 

  17. J. Chen et al., In-situ synthesis of molybdenum sulfide/reduced graphene oxide porous film as robust counter electrode for dye-sensitized solar cells. J. Colloid Interface Sci. 524, 475–482 (2018). https://doi.org/10.1016/j.jcis.2018.04.046

    Article  CAS  Google Scholar 

  18. V. Tran, S.V.N. Pammi, B. Park, Y. Han, C. Jeon, S. Yoon, Nano Energy Transfer-free graphene electrodes for super-flexible and semi-transparent perovskite solar cells fabricated under ambient air. Nano Energy 65(2019), 104018 (2019). https://doi.org/10.1016/j.nanoen.2019.104018

    Article  CAS  Google Scholar 

  19. M. Guo et al., Composite electrode based on single-atom Ni doped graphene for planar carbon-based perovskite solar cells. Mater. Des. 209, 109972 (2021). https://doi.org/10.1016/j.matdes.2021.109972

    Article  CAS  Google Scholar 

  20. J.J. Jin et al., Efficient and stable flexible perovskite solar cells based on graphene-AgNWs substrate and carbon electrode without hole transport materials. J. Power Sources 482(September), 228953 (2020). https://doi.org/10.1016/j.jpowsour.2020.228953

    Article  CAS  Google Scholar 

  21. D. Jalalian, A. Ghadimi, A. Kiani, Modeling of a high performance bandgap graded Pb-free HTM-free perovskite solar cell. Eur. Phys. J. Appl. Phys. 87(1), 10101 (2019). https://doi.org/10.1051/epjap/2019190095

    Article  CAS  Google Scholar 

  22. A. Tara, V. Bharti, S. Sharma, R. Gupta, Device simulation of FASnI3 based perovskite solar cell with Zn(O0.3, S0.7) as electron transport layer using SCAPS-1D. Opt. Mater. 119(May), 111362 (2021). https://doi.org/10.1016/j.optmat.2021.111362

    Article  CAS  Google Scholar 

  23. B. Sharma, A.S. Mathur, V.K. Rajput, I.K. Singh, B.P. Singh, Device modeling of non-fullerene organic solar cell by incorporating CuSCN as a hole transport layer using SCAPS. Optik 251(October), 168457 (2021). https://doi.org/10.1016/j.ijleo.2021.168457

    Article  CAS  Google Scholar 

  24. M. Belarbi, O. Zeggai, S. Louhibi-Fasla, Numerical study of methylammonium lead iodide Perovskite solar cells using SCAPS-1D simulation program. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2021.12.425

    Article  Google Scholar 

  25. K. Sobayel et al., A comprehensive defect study of tungsten disulfide (WS2) as electron transport layer in perovskite solar cells by numerical simulation. Results Phys. 12(December), 1097–1103 (2019). https://doi.org/10.1016/j.rinp.2018.12.049

    Article  Google Scholar 

  26. H. Alipour, A. Ghadimi, Optimization of lead-free perovskite solar cells in normal-structure with WO3 and water-free PEDOT: PSS composite for hole transport layer by SCAPS-1D simulation. Opt. Mater. 120(July), 111432 (2021). https://doi.org/10.1016/j.optmat.2021.111432

    Article  CAS  Google Scholar 

  27. A.K. Kang, M.H. Zandi, N.E. Gorji, Simulation analysis of graphene contacted perovskite solar cells using SCAPS-1D. Opt. Quantum Electron. 51(4), 1 (2019). https://doi.org/10.1007/s11082-019-1802-3

    Article  CAS  Google Scholar 

  28. S. Zandi, P. Saxena, N.E. Gorji, Numerical simulation of heat distribution in RGO-contacted perovskite solar cells using COMSOL. Sol. Energy 197(December), 105–110 (2020). https://doi.org/10.1016/j.solener.2019.12.050

    Article  CAS  Google Scholar 

  29. X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18(2), 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5

    Article  CAS  Google Scholar 

  30. K. Wu, C. Wang, X. Chen, W. Wang, Y. Yang, Facile synthesis of hydrophobic MoS2 and its activity and stability in the hydrodeoxygenation reaction. New J. Chem. 43(6), 2734–2739 (2019). https://doi.org/10.1039/c8nj05980b

    Article  CAS  Google Scholar 

  31. P.K. Narayanam, P. Soni, V.D. Botcha, G. Singh, S.S. Major, Transparent and hydrophobic ‘Reduced Graphene Oxide-TiO2’ nanocomposites for non-wetting device applications materials chemistry division. Mater Chem Met Fuel Cycle Group (2018). https://doi.org/10.1021/acsanm.8b01302

    Article  Google Scholar 

  32. J. Chen, Y. Xia, J. Yang, B. Chen, Fabrication of monolayer MoS2/rGO hybrids with excellent tribological performances through a surfactant-assisted hydrothermal route. Appl. Phys. A Mater. Sci. Process. (2018). https://doi.org/10.1007/s00339-018-1843-7

    Article  Google Scholar 

  33. K.D. Rasamani, F. Alimohammadi, Y. Sun, Interlayer-expanded MoS2. Mater. Today 20(2), 83–91 (2017). https://doi.org/10.1016/j.mattod.2016.10.004

    Article  CAS  Google Scholar 

  34. F.J. Burgos, I. Llorente, Synthesis of Cu/rGO composites by chemical and thermal reduction of graphene oxide. J. Alloys Compd. 800, 379–391 (2019). https://doi.org/10.1016/j.jallcom.2019.06.008

    Article  CAS  Google Scholar 

  35. A.K. Gautam, M. Faraz, N. Khare, Enhanced thermoelectric properties of MoS2 with the incorporation of reduced graphene oxide (RGO). J. Alloys Compd. 838, 155673 (2020). https://doi.org/10.1016/j.jallcom.2020.155673

    Article  CAS  Google Scholar 

  36. C. Li et al., Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47(13), 4981–5037 (2018). https://doi.org/10.1039/c8cs00067k

    Article  CAS  Google Scholar 

  37. W. Wang et al., Self-assembled MoS2/rGO nanocomposites with tunable UV-IR absorption. RSC Adv. 8(5), 2410–2417 (2018). https://doi.org/10.1039/c7ra12455d

    Article  CAS  Google Scholar 

  38. Abid, P. Sehrawat, S.S. Islam, P. Mishra, S. Ahmad, Reduced graphene oxide (rGO) based wideband optical sensor and the role of temperature, defect states and quantum efficiency. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-21686-2

    Article  Google Scholar 

  39. Y. Wang et al., Sulfur-doped reduced graphene oxide/MoS 2 composite with exposed active sites as efficient Pt-free counter electrode for dye-sensitized solar cell. Appl. Surf. Sci. 452, 232–238 (2018). https://doi.org/10.1016/j.apsusc.2018.04.276

    Article  CAS  Google Scholar 

  40. Y. Jin, Y. Zheng, S.G. Podkolzin, W. Lee, Band gap of reduced graphene oxide tuned by controlling functional groups. J. Mater. Chem. C 8(14), 4885–4894 (2020). https://doi.org/10.1039/c9tc07063j

    Article  CAS  Google Scholar 

  41. E.E. Benson et al., Balancing the hydrogen evolution reaction, surface energetics, and stability of metallic MoS2 nanosheets via covalent functionalization. J. Am. Chem. Soc. 140(1), 441–450 (2018). https://doi.org/10.1021/jacs.7b11242

    Article  CAS  Google Scholar 

  42. E. Widianto, A. Shobih, E.S. Rosa, K. Triyana, N.M. Nursam, I. Santoso, Performance analysis of carbon-based perovskite solar cells by graphene oxide as hole transport layer: Experimental and numerical simulation. Opt. Mater. 121(June), 111584 (2021). https://doi.org/10.1016/j.optmat.2021.111584

    Article  CAS  Google Scholar 

  43. M.S. Shamna, K.S. Nithya, K.S. Sudheer, Simulation and optimization of CH3NH3SnI3 based inverted perovskite solar cell with NiO as Hole transport material. Mater. Today Proc. 33, 1246–1251 (2019). https://doi.org/10.1016/j.matpr.2020.03.488

    Article  CAS  Google Scholar 

  44. S. Nair, J.V. Gohel, Impact of stress testing and passivation strategies on low-cost carbon-based perovskite solar cell under ambient conditions. Opt. Mater. 117(May), 111214 (2021). https://doi.org/10.1016/j.optmat.2021.111214

    Article  CAS  Google Scholar 

  45. S.G. Hashmi et al., High performance carbon-based printed perovskite solar cells with humidity assisted thermal treatment. J. Mater. Chem. A 5(24), 12060–12067 (2017). https://doi.org/10.1039/c7ta04132b

    Article  CAS  Google Scholar 

  46. J. Verschraegen, M. Burgelman, Numerical modeling of intra-band tunneling for heterojunction solar cells in scaps. Thin Solid Films 515(15 SPEC. ISS), 6276–6279 (2007). https://doi.org/10.1016/j.tsf.2006.12.049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Universiti Teknikal Malaysia Melaka for the facilities support of this work and UTeM Zamalah Scheme for PhD support of Nur Ezyanie Safie. Authors also express heartfelt gratitude to Dr. Marc Burgelman and his staff (University of Gent, Belgium), for developing the SCAPS-1D 3.3.10 simulation software and making it accessible for all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Azam.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safie, N.E., Sairi, M.N.F.M., Azam, M.A. et al. Development and analysis of rGO-MoS2 nanocomposite as top electrode for the application of inverted planar perovskite solar cells via SCAPS-1D device simulation. Journal of Materials Research 37, 3372–3383 (2022). https://doi.org/10.1557/s43578-022-00652-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00652-9

Keywords

Navigation