Skip to main content
Log in

Effects of Pt and Ru doping on the magnetic, optical, photoelectrochemical and photocatalytic properties of electrospun hematite (α-Fe2O3) fibres

  • Invited Paper
  • FOCUS ISSUE: Mössbauer Spectroscopy from Artificial Nano Architectures to Environmental Applications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development of an efficient and stable photo(electrochemical) catalyst is a very challenging task because its catalytic activity depends directly on the electronic structure and the charge carrier transfer through the catalyst/electrolyte interface. Therefore, the main objective of this study was to optimize the semiconducting properties of the electrospun α-Fe2O3 fibres by Ru3+ and Pt4+ doping, to determine the effect of these cations on magnetic and optical properties, as well as on the photocatalytic and photoelectrochemical activity of α-Fe2O3 fibres. Increased temperature of the Morin transition, enhanced remanent magnetization, lower coercivity and narrower optical bandgap in hematite fibres by Pt4+ and Ru3+ doping was observed. Electrochemical measurements revealed n-type conductivity of all fibres, while increased donor density and anodic shift of the flatband potential were registered for the doped fibres. The photoactivity of fibres, which was tested for the degradation of rhodamine B, depended on the dopant used.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. E. Becquerel, C. R. Acad. Sci. Paris 9, 561 (1839)

    Google Scholar 

  2. J.O.M. Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry Fundamentals of Electrodics 2A, 2nd edn. (Kluwer, New York, 2000), pp. 1074–1090

    Google Scholar 

  3. A. Fujishima, K. Honda, Nature 238, 37 (1972). https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  4. H. Wu, H.L. Tan, C.Y. Toe, J. Scott, L. Wang, R. Amal, Y.H. Ng, Adv. Mater. 32, 1904717 (2020). https://doi.org/10.1002/adma.201904717

    Article  CAS  Google Scholar 

  5. T. Mohammadi, Y. Ghayeb, T. Sharifi, M.M. Momeni, New J. Chem. 44, 2339 (2020). https://doi.org/10.1039/C9NJ03322J

    Article  CAS  Google Scholar 

  6. J.K. Kim, S. Bae, W. Kim, M.J. Jeong, S.H. Lee, C.-L. Lee, W.K. Choi, J.Y. Hwang, J.H. Park, D.I. Son, Nano Energy 13, 258 (2015). https://doi.org/10.1016/j.nanoen.2015.02.013

    Article  CAS  Google Scholar 

  7. Q. Mi, Y. Ping, Y. Li, B. Cao, B.S. Brunschwig, P.G. Khalifah, G.A. Galli, H.B. Gray, N.S. Lewis, J. Am. Chem. Soc. 134, 18318 (2012). https://doi.org/10.1021/ja3067622

    Article  CAS  Google Scholar 

  8. L. Shang, B. Tong, H. Yu, G.I.N. Waterhouse, C. Zhou, Y. Zhao, M. Tahir, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Energy Mater. 6, 1501241 (2016). https://doi.org/10.1002/aenm.201501241

    Article  CAS  Google Scholar 

  9. Z. Grubač, J. Katić, M. Metikoš-Huković, J. Electrochem. Soc. 166, H433 (2019). https://doi.org/10.1149/2.0481910jes

    Article  CAS  Google Scholar 

  10. Y.W. Phuan, W.-J. Ong, M.N. Chong, J.D. Ocon, J. Photochem. Photobiol. C: Photochem. Rev. 33, 54 (2017). https://doi.org/10.1016/j.jphotochemrev.2017.10.001

    Article  CAS  Google Scholar 

  11. A. Bak, S.K. Choi, H. Park, Bull. Korean. Chem. Soc. 36, 1487 (2015). https://doi.org/10.1002/bkcs.10290

    Article  CAS  Google Scholar 

  12. Y. Zhang, H. Ji, W. Ma, C. Chen, W. Song, J. Zhao, Molecules 21, 868 (2016). https://doi.org/10.3390/molecules21070868

    Article  CAS  Google Scholar 

  13. K. Sivula, F. Le Formal, M. Grätzel, Chemsuschem 4, 432 (2011). https://doi.org/10.1002/cssc.201000416

    Article  CAS  Google Scholar 

  14. D.A. Wheeler, G. Wang, Y. Ling, Y. Li, J.Z. Zhang, Energy Environ. Sci. 5, 6682 (2012). https://doi.org/10.1039/C2EE00001F

    Article  CAS  Google Scholar 

  15. P. Dias, A. Vilanova, T. Lopes, L. Andrade, A. Mendes, Nano Energy 23, 70 (2016). https://doi.org/10.1016/j.nanoen.2016.03.008

    Article  CAS  Google Scholar 

  16. Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, Nano Lett. 11, 2119 (2011). https://doi.org/10.1021/nl200708y

    Article  CAS  Google Scholar 

  17. S. Shen, S.A. Lindley, X. Chen, J.Z. Zhang, Energy Environ. Sci. 9, 2744 (2016). https://doi.org/10.1039/C6EE01845A

    Article  CAS  Google Scholar 

  18. I. Kwon Jeong, M.A. Mahadik, S. Kim, H.M. Pathan, W.-S. Chae, H.S. Chung, G.W. Kong, S.H. Choi, J.S. Jang, Chem. Eng. J. 390, 124504 (2020). https://doi.org/10.1016/j.cej.2020.124504

    Article  CAS  Google Scholar 

  19. Y.W. Phuan, M.N. Chong, K. Egamparan, B.-K. Lee, T. Zhu, E.S. Chan, J. Taiwan Inst. Chem. Eng. 66, 249 (2016). https://doi.org/10.1016/j.jtice.2016.06.031

    Article  CAS  Google Scholar 

  20. J. Frydrych, L. Machala, J. Tucek, K. Siskova, J. Filip, J. Pechousek, K. Safarova, M. Vondracek, J.H. Seo, O. Schneeweiss, M. Gratzel, K. Sivula, R. Zboril, J. Mater. Chem. 22, 23232 (2012). https://doi.org/10.1039/C2JM34639G

    Article  CAS  Google Scholar 

  21. M. Robić, M. Ristić, M. Marciuš, S. Krehula, S. Musić, J. Nanopart. Res. 22, 358 (2020). https://doi.org/10.1007/s11051-020-05090-4

    Article  CAS  Google Scholar 

  22. A. Kleiman-Shwarsctein, M.N. Huda, A. Walsh, Y. Yan, G.D. Stucky, Y.-S. Hu, M.M. Al-Jassim, E.W. McFarland, Chem. Mater. 22, 510 (2010). https://doi.org/10.1021/cm903135j

    Article  CAS  Google Scholar 

  23. A. Kleiman-Shwarsctein, Y.-S. Hu, A.J. Forman, G.D. Stucky, E.W. McFarland, J. Phys. Chem. C 112, 15900 (2008). https://doi.org/10.1021/jp803775j

    Article  CAS  Google Scholar 

  24. W. Cheng, J. He, Z. Sun, Y. Peng, T. Yao, Q. Liu, Y. Jiang, F. Hu, Z. Xie, B. He, S. Wei, J. Phys. Chem. C 116, 24060 (2012). https://doi.org/10.1021/jp306738e

    Article  CAS  Google Scholar 

  25. N. Popov, M. Bošković, M. Perović, K. Zadro, V. Gilja, L. Kratofil Krehula, M. Robić, M. Marciuš, M. Ristić, S. Musić, D. Stanković, S. Krehula, J. Magn. Magn. Mater. 538, 168316 (2021). https://doi.org/10.1016/j.jmmm.2021.168316

    Article  CAS  Google Scholar 

  26. Y. Zhu, J.C. Zhang, J. Zhai, L. Jiang, Thin Solid Films 510, 271 (2006). https://doi.org/10.1016/j.tsf.2005.09.004

    Article  CAS  Google Scholar 

  27. G. Binitha, M.S. Soumya, A.A. Madhavan, P. Praveen et al., J. Mater. Chem. A 1, 11698 (2013). https://doi.org/10.1039/C3TA12352A

    Article  CAS  Google Scholar 

  28. ICDD PDF-2, Powder Diffraction File™ (ICDD, Newtown Square, PA, 2004)

    Google Scholar 

  29. R.M. Cornell, U. Schwertmann, The Iron Oxides, Structure, Properties, Reactions, Occurrence and Uses, 2nd edn. (Wiley, Weinheim, 2003). https://doi.org/10.1002/3527602097

    Book  Google Scholar 

  30. M. Ristić, A. Kremenović, M. Reissner, Ž Petrović, S. Musić, J. Mater. Sci.: Mater. Electron. 31, 9812 (2020). https://doi.org/10.1007/s10854-020-03526-0

    Article  CAS  Google Scholar 

  31. Ö. Helgason, I. Ayub, F.J. Berry, E. Crabb, Hyperfine Interact. 141, 291 (2002). https://doi.org/10.1023/A:1021259632278

    Article  Google Scholar 

  32. R. Satheesh, K. Vignesh, A. Suganthi, M. Rajarajan, J. Environ. Chem. Eng. 2, 1956 (2014). https://doi.org/10.1016/j.jece.2014.08.016

    Article  CAS  Google Scholar 

  33. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974)

    Google Scholar 

  34. R.D. Shannon, Acta Cryst. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  35. M. Anenburg, J.L. Wykes, U. Troitzsch, C. Le Losq, J. Chen, Mater. Adv. 2, 5195 (2021). https://doi.org/10.1039/D1MA00458A

    Article  CAS  Google Scholar 

  36. M.-Z. Dang, D.G. Rancourt, J.E. Dutrizac, G. Lamarche, R. Provencher, Hyperfine Interact. 117, 271 (1998). https://doi.org/10.1023/A:1012655729417

    Article  CAS  Google Scholar 

  37. C.J. Serna, J.L. Rendon, J.E. Iglesias, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 38, 797 (1982). https://doi.org/10.1016/0584-8539(82)80070-6

    Article  Google Scholar 

  38. C.J. Serna, M. Ocana, J.E. Iglesias, J Phys C: Solid State Phys. 20, 473 (1987). https://doi.org/10.1088/0022-3719/20/3/017

    Article  CAS  Google Scholar 

  39. D.M. Sherman, T.D. Waite, Am. Mineral. 70, 1262 (1985)

    CAS  Google Scholar 

  40. L. Song, S. Zhang, B. Chen et al., Colloids Surf. A: Physicochem. Eng. Aspects 360, 1 (2010). https://doi.org/10.1016/j.colsurfa.2010.01.012

    Article  CAS  Google Scholar 

  41. S.K. Apte, S.D. Naik, R.S. Sonawane, B.B. Kale, J.O. Baeg, J. Am. Ceram. Soc. 90, 412 (2007). https://doi.org/10.1111/j.1551-2916.2006.01424.x

    Article  CAS  Google Scholar 

  42. M.F. Silva, L.A.S. de Oliveira, M.A. Ciciliati et al., J. Appl. Phys. 114, 104311 (2013). https://doi.org/10.1063/1.4821253

    Article  CAS  Google Scholar 

  43. A.M. Jubb, H.C. Allen, ACS Appl. Mater. Interfaces 2, 2804 (2010). https://doi.org/10.1021/am1004943

    Article  CAS  Google Scholar 

  44. B. Pal, M. Sharon, Thin Solid Films 379, 83 (2000). https://doi.org/10.1016/S0040-6090(00)01547-9

    Article  CAS  Google Scholar 

  45. J.L. Rendon, C.J. Serna, Clay Miner. 16, 375 (1981). https://doi.org/10.1180/claymin.1981.016.4.06

    Article  CAS  Google Scholar 

  46. A. Bewick, C. Gutiérrez, G. Larramona, J. Electroanal. Chem. 332, 155 (1992). https://doi.org/10.1016/0022-0728(92)80348-8

    Article  CAS  Google Scholar 

  47. E. Murad, J. Cashion, Mössbauer Spectroscopy of Environmental Materials and their Industrial Utilization (Kluwer Academic Publishers, Dordrecht, 2004)

    Book  Google Scholar 

  48. F.J. Morin, Phys. Rev. 78, 819 (1950). https://doi.org/10.1103/PhysRev.78.819.2

    Article  CAS  Google Scholar 

  49. A.H. Morrish, Canted Antiferromagnetism: Hematite (World Scientific, Singapore, 1994)

    Google Scholar 

  50. S. Krehula, S. Musić, J. Alloys Compd. 516, 207 (2012). https://doi.org/10.1016/j.jallcom.2011.12.052

    Article  CAS  Google Scholar 

  51. S. Krehula, G. Štefanić, K. Zadro, L. Kratofil Krehula, M. Marciuš, S. Musić, J. Alloys Compd. 545, 200 (2012). https://doi.org/10.1016/j.jallcom.2012.08.009

    Article  CAS  Google Scholar 

  52. S.B. Wang, Y.L. Min, S.H. Yu, J. Phys. Chem. C 111, 3551 (2007). https://doi.org/10.1021/jp068647e

    Article  CAS  Google Scholar 

  53. Y.L. Min, H.Y. Xia, Y.C. Chen, Y. Zhang, Colloids Surf. A: Physicochem. Eng. Asp. 368, 1 (2010). https://doi.org/10.1016/j.colsurfa.2010.05.039

    Article  CAS  Google Scholar 

  54. J.R. Jesus, R.J.S. Lima, K.O. Moura, J.G.S. Duque, C.T. Meneses, Ceram. Int. 44, 3585 (2018). https://doi.org/10.1016/j.ceramint.2017.11.068

    Article  CAS  Google Scholar 

  55. M. Coduri, P. Masala, L. Del Bianco, F. Spizzo, D. Cerasoli et al., Nanomaterials 10, 867 (2020). https://doi.org/10.3390/nano10050867

    Article  CAS  Google Scholar 

  56. A.G. Tamirat, J. Rick, A.A. Dubale, W.-N. Sub, B.-J. Hwang, Nanoscale Horiz. 1, 243 (2016). https://doi.org/10.1039/C5NH00098J

    Article  CAS  Google Scholar 

  57. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  58. Shimadzu Application News No. A428, Spectrophotometric Analysis, Measurements of Band Gap in Compound Semiconductors—Band Gap Determination from Diffuse Reflectance Spectra. https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/14105/an_a428-en.pdf. Accessed 15 Feb 2021.

  59. T. Lindgren, L. Vayssieres, H. Wang, S.E. Lindquist, in Chemical Physics of Nanostructured Semiconductors. ed. by A.I. Kokorin, D. Bahnemann (VSP, Utrecht, 2003), p. 83

    Google Scholar 

  60. N. Beermann, L. Vayssieres, S.-E. Lindquist, A. Hagfeldt, J. Electrochem. Soc. 147, 2456 (2000). https://doi.org/10.1149/1.1393553

    Article  CAS  Google Scholar 

  61. J.A. Glasscock, P.R.F. Barnes, I.C. Plumb, A. Bendavid, P.J. Martin, Thin Solid Films 516, 1716 (2008). https://doi.org/10.1016/j.tsf.2007.05.020

    Article  CAS  Google Scholar 

  62. R. Beranek, Adv. Phys. Chem. 2011, 786759 (2012). https://doi.org/10.1155/2011/786759

    Article  CAS  Google Scholar 

  63. F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, K. Sivula, Chem. Sci. 2, 737 (2011). https://doi.org/10.1039/C0SC00578A

    Article  Google Scholar 

  64. G. Horowitz, J. Electroanal. Chem. Interfac. Electrochem. 159, 421 (1983). https://doi.org/10.1016/S0022-0728(83)80638-X

    Article  CAS  Google Scholar 

  65. R.L. Spray, K.J. McDonald, K.-S. Choi, J. Phys. Chem. C 115, 3497 (2011). https://doi.org/10.1021/jp1093433

    Article  CAS  Google Scholar 

  66. S. Shen, J. Zhou, C.-L. Dong et al., Sci. Rep. 4, 6627 (2014). https://doi.org/10.1038/srep06627

    Article  CAS  Google Scholar 

  67. M. Zhang, W. Luo, Z. Li, T. Yu, Z. Zou, Appl. Phys. Lett. 97, 042105 (2010). https://doi.org/10.1063/1.3470109

    Article  CAS  Google Scholar 

  68. G. Rahman, O.-S. Joo, Mater. Chem. Phys. 140, 316 (2013). https://doi.org/10.1016/j.matchemphys.2013.03.042

    Article  CAS  Google Scholar 

  69. H.P. Maruska, A.K. Ghosh, Sol. Energy 20, 443 (1978). https://doi.org/10.1016/0038-092X(78)90061-0

    Article  CAS  Google Scholar 

  70. J.H. Kennedy, K.W. Frese, J. Electrochem. Soc. 125, 709 (1978). https://doi.org/10.1149/1.2131532

    Article  CAS  Google Scholar 

  71. H. Dotan, K. Sivula, M. Grätzel, W.S.C. Rothschild, Energy Environ. Sci. 4, 958 (2011). https://doi.org/10.1039/C0EE00570C

    Article  CAS  Google Scholar 

  72. J.J. Cai, S. Li, J.S. Wang, Y. Mei, Y. Ren, F. Cao, G. Qin, Mater. Sci. Forum 787, 46 (2014). https://doi.org/10.4028/www.scientific.net/MSF.787.46

    Article  CAS  Google Scholar 

  73. S. Trasatti, J. Electroanal. Chem. 209, 417 (1986). https://doi.org/10.1016/0022-0728(86)80570-8

    Article  Google Scholar 

  74. P.M. Wood, Biochem. J. 253, 287 (1988). https://doi.org/10.1042/bj2530287

    Article  CAS  Google Scholar 

  75. P. Wardman, J. Phys. Chem. Ref. Data 18, 1637 (1989). https://doi.org/10.1063/1.555843

    Article  CAS  Google Scholar 

  76. Y. Ma, Q. Wang, S. Xing, J. Colloid. Interface Sci. 529, 247 (2018). https://doi.org/10.1016/j.jcis.2018.06.020

    Article  CAS  Google Scholar 

  77. E. Blanco, P. Atienzar, P. Hernández, C. Quintana, Phys. Chem. Chem. Phys. 19, 18913 (2017). https://doi.org/10.1039/C7CP03534A

    Article  CAS  Google Scholar 

  78. Z. Klencsár, E. Kuzmann, A. Vértes, J. Radioanal. Nucl. Chem. 210, 105 (1996). https://doi.org/10.1007/BF02055410

    Article  Google Scholar 

  79. V. Barron, J. Torrent, J. Soil Sci. 37, 499 (1986). https://doi.org/10.1111/j.1365-2389.1986.tb00382.x

    Article  CAS  Google Scholar 

  80. S. Krehula, M. Ristić, Ž Petrović, L. Kratofil Krehula, I. Mitar, S. Musić, J. Alloys Compd. 802, 290 (2019). https://doi.org/10.1016/j.jallcom.2019.06.133

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Croatian Science Foundation (Grant numbers IP-2016-06-8254 and IP-2018-01-1982).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Željka Petrović or Stjepko Krehula.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 871 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, Ž., Ristić, M., Kraljić Roković, M. et al. Effects of Pt and Ru doping on the magnetic, optical, photoelectrochemical and photocatalytic properties of electrospun hematite (α-Fe2O3) fibres. Journal of Materials Research 38, 974–989 (2023). https://doi.org/10.1557/s43578-022-00645-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00645-8

Keywords

Navigation